Startseite Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals

  • Frauke Gerdes , Eugen Klein , Sascha Kull , Mohammad Mehdi Ramin Moayed , Rostyslav Lesyuk und Christian Klinke EMAIL logo
Veröffentlicht/Copyright: 28. März 2018

Abstract

In this review, we highlight the role of halogenated compounds in the colloidal synthesis of nanostructured semiconductors. Halogen-containing metallic salts used as precursors and halogenated hydrocarbons used as ligands allow stabilizing different shapes and crystal phases, and enable the formation of colloidal systems with different dimensionality. We summarize recent reports on the tremendous influence of these compounds on the physical properties of nanocrystals, like field-effect mobility and solar cell performance and outline main analytical methods for the nanocrystal surface control.


Dedicated to: Alexander Eychmüller on the occasion of his 60th birthday.


Acknowledgements

The authors thank Beatriz H. Juarez for critically reading the manuscript and helpful suggestions. The authors gratefully acknowledge financial support of the European Research Council via the ERC Starting Grant “2D-SYNETRA” (Seventh Framework Program FP7, Project: 304980) and thank the German Research Foundation DFG for financial support in the frame of the Cluster of Excellence “Center of ultrafast imaging CUI”. C.K. thanks the German Research Foundation DFG for financial support in the frame the Heisenberg scholarship KL 1453/9-2. MMRM thanks PIER Helmholtz Graduate School for the financial support.

References

1. C. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.10.1021/ja00072a025Suche in Google Scholar

2. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem. 99 (1995) 7754.10.1021/j100019a063Suche in Google Scholar

3. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSuche in Google Scholar

4. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, J. R. Heath, J. Phys. Chem. 100 (1996) 7212.10.1021/jp953719fSuche in Google Scholar

5. M. R. Kim, K. Miszta, M. Povia, R. Brescia, S. Christodoulou, M. Prato, S. Marras, L. Manna, ACS Nano 6 (2012) 11088.10.1021/nn3048846Suche in Google Scholar PubMed

6. J. Lim, W. K. Bae, K. U. Park, L. zur Borg, R. Zentel, S. Lee, K. Char, Chem. Mater. 25 (2012) 1443.10.1021/cm3035592Suche in Google Scholar

7. M. Saruyama, M. Kanehara, T. Teranishi, J. Am. Chem. Soc. 132 (2010) 3280.10.1021/ja9095285Suche in Google Scholar PubMed

8. Y. Zou, D. Li, D. Yang, Nanoscale Res. Lett. 6 (2011) 374.10.1186/1556-276X-6-374Suche in Google Scholar PubMed PubMed Central

9. M. Meyns, F. Iacono, C. Palencia, J. Geweke, M. D. Coderch, U. E. Fittschen, J. M. Gallego, R. Otero, B. H. Juárez, C. Klinke, Chem. Mater. 26 (2014) 1813.10.1021/cm4037082Suche in Google Scholar

10. C. Palencia, K. Lauwaet, L. de La Cueva, M. Acebrón, J. J. Conde, M. Meyns, C. Klinke, J. M. Gallego, R. Otero, B. H. Juárez, Nanoscale 6 (2014) 6812.10.1039/C4NR00431KSuche in Google Scholar

11. B. H. Juarez, Z. Phys. Chem. 229 (2015) 119.10.1515/zpch-2014-0594Suche in Google Scholar

12. J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125 (2003) 11100.10.1021/ja0357902Suche in Google Scholar PubMed

13. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, Nat. Mater. 10 (2011) 765.10.1038/nmat3118Suche in Google Scholar PubMed

14. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, Nat. Nanotechnol. 7 (2012) 577.10.1038/nnano.2012.127Suche in Google Scholar PubMed

15. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov, J. M. Pietryga, J. Am. Chem. Soc. 134 (2012) 20160.10.1021/ja309783vSuche in Google Scholar PubMed

16. M. Ibáñez, R. J. Korkosz, Z. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, M. G. Kanatzidis, J. Am. Chem. Soc. 137 (2015) 4046.10.1021/jacs.5b00091Suche in Google Scholar PubMed

17. K. T. Yong, Y. Sahoo, M. T. Swihart, P. N. Prasad, J. Phys. Chem. C 111 (2007) 2447.10.1021/jp066392zSuche in Google Scholar

18. S.-W. Hsu, C. Ngo, W. Bryks, A. R. Tao, Chem. Mater. 27 (2015) 4957.10.1021/acs.chemmater.5b01223Suche in Google Scholar

19. J. Owen, Science 347 (2015) 615.10.1126/science.1259924Suche in Google Scholar PubMed

20. M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 15 (2016) 141.10.1038/nmat4526Suche in Google Scholar PubMed

21. J. De Roo, K. De Keukeleere, Z. Hens, I. Van Driessche, Dalton Trans. 45 (2016) 13277.10.1039/C6DT02410FSuche in Google Scholar

22. M. Sluydts, K. De Nolf, V. Van Speybroeck, S. Cottenier, Z. Hens, ACS Nano 10 (2016) 1462.10.1021/acsnano.5b06965Suche in Google Scholar PubMed

23. R. G. Pearson, The HSAB principle. Chemical Hardness, Wiley-VCH Verlag GmbH, Weinheim (2005), pp. 1–27.Suche in Google Scholar

24. W. van der Stam, Q. A. Akkerman, X. Ke, M. A. van Huis, S. Bals, C. de Mello Donega, Chem. Mater. 27 (2014) 283.10.1021/cm503929qSuche in Google Scholar

25. C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, Science 329 (2010) 550.10.1126/science.1188035Suche in Google Scholar PubMed

26. B. H. Juarez, M. Meyns, A. Chanaewa, Y. Cai, C. Klinke, H. Weller, J. Am. Chem. Soc. 130 (2008) 15282.10.1021/ja805662hSuche in Google Scholar PubMed

27. T. Bielewicz, M. M. Ramin Moayed, V. Lebedeva, C. Strelow, A. Rieckmann, C. Klinke, Chem. Mater. 27 (2015) 8248.10.1021/acs.chemmater.5b03088Suche in Google Scholar

28. G. B. Bhandari, K. Subedi, Y. He, Z. Jiang, M. Leopold, N. Reilly, H. P. Lu, A. T. Zayak, L. Sun, Chem. Mater. 26 (2014) 5433.10.1021/cm502524zSuche in Google Scholar

29. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. Von Freymann, G. A. Ozin, J. Phys. Chem. B 110 (2006) 671.10.1021/jp0563585Suche in Google Scholar PubMed

30. J. S. Son, X. D. Wen, J. Joo, J. Chae, S. I. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, S. H. Choi, Angew. Chem. 121 (2009) 6993.10.1002/ange.200902791Suche in Google Scholar

31. S. Ithurria, G. Bousquet, B. Dubertret, J. Am. Chem. Soc. 133 (2011) 3070.10.1021/ja110046dSuche in Google Scholar PubMed

32. J. H. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim, T. Hyeon, J. Am. Chem. Soc. 127 (2005) 5662.10.1021/ja044593fSuche in Google Scholar PubMed

33. J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Adv. Mater. 16 (2004) 436.10.1002/adma.200306251Suche in Google Scholar

34. K.-S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 127 (2005) 7140.10.1021/ja050107sSuche in Google Scholar PubMed

35. G. a. Tai, J. Zhou, W. Guo, Nanotechnology 21 (2010) 175601.10.1088/0957-4484/21/17/175601Suche in Google Scholar PubMed

36. C. Ricolleau, L. Audinet, M. Gandais, T. Gacoin, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 9 (1999) 565.10.1007/PL00010951Suche in Google Scholar

37. V. Singh, P. K. Sharma, P. Chauhan, Mater. Chem. Phys. 121 (2010) 202.10.1016/j.matchemphys.2010.01.019Suche in Google Scholar

38. F. Gerdes, C. Navío, B. H. Juárez, C. Klinke, Nano Lett. 17 (2017) 4165.10.1021/acs.nanolett.7b00937Suche in Google Scholar PubMed

39. J. Y. Woo, J. H. Ko, J. H. Song, K. Kim, H. Choi, Y. H. Kim, D. C. Lee, S. Jeong, J. Am. Chem. Soc. 136 (2014) 8883.10.1021/ja503957rSuche in Google Scholar PubMed

40. J. Zhang, J. Gao, E. M. Miller, J. M. Luther, M. C. Beard, ACS Nano 8 (2014) 614.10.1021/nn405236kSuche in Google Scholar PubMed

41. A. Shapiro, Y. Jang, A. Rubin-Brusilovski, A. K. Budniak, F. Horani, A. Sashchiuk, E. Lifshitz, Chem. Mater. 28 (2016) 6409.10.1021/acs.chemmater.6b02917Suche in Google Scholar

42. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, Nat. Mater. 13 (2014) 822.10.1038/nmat4007Suche in Google Scholar PubMed

43. A. Stavrinadis, G. Konstantatos, ChemPhysChem 17 (2016) 632.10.1002/cphc.201500834Suche in Google Scholar PubMed

44. M. Shim, P. Guyot-Sionnest, Nature 407 (2000) 981.10.1038/35039577Suche in Google Scholar PubMed

45. K. Kim, D. Yoo, H. Choi, S. Tamang, J. H. Ko, S. Kim, Y. H. Kim, S. Jeong, Angew. Chem. Int. Ed. 55 (2016) 3714.10.1002/anie.201600289Suche in Google Scholar PubMed

46. L. Yuan, R. Patterson, W. Cao, Z. Zhang, Z. Zhang, J. A. Stride, P. Reece, G. Conibeer, S. Huang, RSC Adv. 5 (2015) 68579.10.1039/C5RA13499DSuche in Google Scholar

47. D. V. Talapin, C. B. Murray, Science 310 (2005) 86.10.1126/science.1116703Suche in Google Scholar PubMed

48. D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, E. H. Sargent, Adv. Mater. 24 (2012) 6181.10.1002/adma.201202825Suche in Google Scholar PubMed

49. D. M. Balazs, M. I. Nugraha, S. Z. Bisri, M. Sytnyk, W. Heiss, M. A. Loi, Appl. Phys. Lett. 104 (2014) 112104.10.1063/1.4869216Suche in Google Scholar

50. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3 (2003) 149.10.1021/nl025875lSuche in Google Scholar

51. J. Chang, S. Mao, Y. Zhang, S. Cui, D. A. Steeber, J. Chen, Biosens. Bioelectron. 42 (2013) 186.10.1016/j.bios.2012.10.041Suche in Google Scholar PubMed

52. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T. A. Papadopoulos, J. Briscoe, L. C. Palilis, S. Kennou, E. Gogolides, J. Mater. Chem. A 4 (2016) 11844.10.1039/C6TA03594ASuche in Google Scholar

53. S. R. Kandel, S. Chiluwal, Z. Jiang, Y. Tang, P. J. Roland, K. Subedi, D. M. Dimick, P. Moroz, M. Zamkov, R. Ellingson, J. Hu, Phys. Status Solidi Rapid Res. Lett. 10 (2016) 833.10.1002/pssr.201600278Suche in Google Scholar

Received: 2018-02-20
Accepted: 2018-03-01
Published Online: 2018-03-28
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1164/html
Button zum nach oben scrollen