Startseite Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study

  • Gianluca Fazio , Gotthard Seifert , Mathias Rapacioli , Nathalie Tarrat und Jan-Ole Joswig EMAIL logo
Veröffentlicht/Copyright: 2. März 2018

Abstract

A gold/water interface has been investigated with the DFT-based self-consistent-charge density-functional tight-binding (SCC-DFTB) method using a cluster model. Born–Oppenheimer molecular-dynamics simulations for mono-, bi-, and trilayers of water on the surface of a Au55 cluster have been computed. We have demonstrated the applicability of this method to the study of the structural and dynamical properties of the gold/water-multilayer interface. The results of the simulations clearly show the charge-dependent orientation and the corresponding polarization of the water sphere around the gold cluster. However, it was also shown that this polarization is restricted almost only to the first solvation shell. This illustrates the rather short-range screening behavior of water. The present study builds the basis for further investigations of metal/electrolyte interfaces on a reliable atomistic level, avoiding the problems of spurious artifacts in models using periodic boundary conditions.


Dedicated to:

Prof. Alexander Eychmüller on the occasion of his 60th birthday.


Acknowledgements

On the occasion of his 60th birthday, GS and JOJ acknowledge a long-term fruitful collaboration and friendship with their colleague Alexander Eychmüller. JOJ enjoyed especially their joint participation in the LVB project (project number 18/59/74/95/127/130-133/135). Furthermore, the authors acknowledge computational time by the Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) at TU Dresden for project TransPheMat.

References

1. H. Helmholtz, Annalen der Physik 243 (1879) 337.10.1002/andp.18792430702Suche in Google Scholar

2. M. Gouy, J. Phys. Theor. Appl. 9 (1910) 457.10.1051/jphystap:019100090045700Suche in Google Scholar

3. D. L. Chapman, Lond. Edinb. Dubl. Phil. Mag. 25 (1913) 475.10.1080/14786440408634187Suche in Google Scholar

4. P. Debye, E. Huckel, Z. Phys. 24 (1923) 185.Suche in Google Scholar

5. W. Schmickler, D. Henderson, Prog. Surf. Sci. 22 (1986) 323.10.1016/0079-6816(86)90005-5Suche in Google Scholar

6. R. Parsons, Chem. Rev. 90 (1990) 813.10.1021/cr00103a008Suche in Google Scholar

7. K.-i. Ataka, T. Yotsuyanagi, M. Osawa, J. Phys. Chem. 100 (1996) 10664.10.1021/jp953636zSuche in Google Scholar

8. Y. Tong, F. Lapointe, M. Thämer, M. Wolf, R. K. Campen, Angew. Chem. Int. Ed. 56 (2017) 4211.10.1002/anie.201612183Suche in Google Scholar PubMed

9. J.-J. Velasco-Velez, C. H. Wu, T. A. Pascal, L. F. Wan, J. Guo, D. Prendergast, M. Salmeron, Science 346 (2014) 831.10.1126/science.1259437Suche in Google Scholar PubMed

10. Y. Xue, J. Chem. Phys. 136 (2012) 024702.10.1063/1.3675494Suche in Google Scholar PubMed

11. G. Seifert, J. Phys. Chem. A. 111 (2007) 5609.10.1021/jp069056rSuche in Google Scholar PubMed

12. G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quantum Chem. 58 (1996) 185.10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-USuche in Google Scholar

13. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58 (1998) 7260.10.1103/PhysRevB.58.7260Suche in Google Scholar

14. Q. Cui, M. Elstner, Phys. Chem. Chem. Phys. 16 (2014) 14368.10.1039/C4CP00908HSuche in Google Scholar

15. D. Selli, G. Fazio, G. Seifert, C. Di Valentin, J. Chem. Theory Comput. 13 (2017) 3862.10.1021/acs.jctc.7b00479Suche in Google Scholar

16. N. Tarrat, M. Rapacioli, J. Cuny, J. Morillo, J.-L. Heully, F. Spiegelman, Comput. Theor. Chem. 1107 (2017) 102.10.1016/j.comptc.2017.01.022Suche in Google Scholar

17. A. Fihey, C. Hettich, J. Touzeau, F. Maurel, A. Perrier, C. Köhler, B. Aradi, T. Frauenheim, J. Comput. Chem. 36 (2015) 2075.10.1002/jcc.24046Suche in Google Scholar

18. L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 30 (2009) 2157.10.1002/jcc.21224Suche in Google Scholar

19. M. Connolly, Science 221 (1983) 709.10.1126/science.6879170Suche in Google Scholar

20. P. Jungwirth, Faraday Discuss. 141 (2009) 9.10.1039/B816684FSuche in Google Scholar

21. A. P. Willard, S. K. Reed, P. A. Madden, D. Chandler, Faraday Discuss. 141 (2009) 423.10.1039/B805544KSuche in Google Scholar

Received: 2018-01-30
Accepted: 2018-02-07
Published Online: 2018-03-02
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1136/html
Button zum nach oben scrollen