Abstract
Layer-by-layer (LBL) assembly produces nanocomposites with distinctively high volume fractions of nanomaterials and nanometer scale controlled uniformity. Although deposition of one nanometer scale layer at a time leads to high performance composites, this deposition mode is also associated with the slow multilayer build-up. Exponential LBL, spin coating, turbo-LBL and other methods tremendously accelerate the multilayer build-up but often yield lower, strength, toughness, conductivity, etc. Here, we introduce gelation assisted layer-by-layer (gaLBL) deposition taking advantage of a repeating cycle of hydrogel formation and subsequent polymer infiltration demonstrated using aramid nanofiber (ANF) and epoxy resin (EPX) as deposition partners. Utilization of ANF gels increases the thickness of each deposited layer from 1–10 nm to 30–300 nm while retaining fine control of thickness in each layer, high volume fraction, and uniformity. While increasing the speed of the deposition, the high density of interfaces associated with nanofiber gels helps retain high mechanical properties. The ANF/EPX multilayer composites revealed a rare combination of properties that was unavailable in traditional aramid-based and other composites, namely, high ultimate strength of 505±47 MPa, high toughness of 50.1±9.8 MJ/m3, and high transparency. Interestingly, the composite also displayed close-to-zero thermal expansion. The constellation of these materials properties is unique both for quasi-anisotropic composites and unidirectional materials with nanofiber alignment. gaLBL demonstrates the capability to resolve the fundamental challenge between high-performance and scalability. The gelation-assisted layered deposition can be extended to other functional components including nanoparticle gels.
References
1. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res. 8 (1993) 1185.10.1557/JMR.1993.1185Suche in Google Scholar
2. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, I. A. Aksay, J. Mater. Res. 16 (2001) 2485.10.1557/JMR.2001.0340Suche in Google Scholar
3. K. E. Gunnison, M. Sarikaya, J. Liu, I. A. Aksay, MRS Proc. 255 (1991) 171.10.1557/PROC-255-171Suche in Google Scholar
4. H. D. Espinosa, J. E. Rim, F. Barthelat, M. J. Buehler, Prog. Mater. Sci. 54 (2009) 1059.10.1016/j.pmatsci.2009.05.001Suche in Google Scholar
5. T. E. Schäffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D. A. Walters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma, Chem. Mater. 9 (1997) 1731.10.1021/cm960429iSuche in Google Scholar
6. C. González, J. J. Vilatela, J. M. Molina-Aldareguía, C. S. Lopes, J. LLorca, Prog. Mater. Sci. 89 (2017) 194.10.1016/j.pmatsci.2017.04.005Suche in Google Scholar
7. N. Kotov, Nat. Mater. 3 (2004) 669.10.1038/nmat1224Suche in Google Scholar PubMed
8. A. A. Mamedov, N. A. Kotov, Langmuir 16 (2000) 5530.10.1021/la000560bSuche in Google Scholar
9. L. J. Bonderer, A. R. Studart, L. J. Gauckler, Science 319 (2008) 1069.10.1126/science.1148726Suche in Google Scholar PubMed
10. S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Science 311 (2006) 515.10.1126/science.1120937Suche in Google Scholar PubMed
11. L. B. Mao, H. L. Gao, H. B. Yao, L. Liu, H. Cölfen, G. Liu, S. M. Chen, S. K. Li, Y. X. Yan, Y. Y. Liu, S.-H. Yu. Science 354 (2016) 107.10.1126/science.aaf8991Suche in Google Scholar PubMed
12. Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, K. Liao, Adv. Mater. 24 (2012) 3426.10.1002/adma.201200452Suche in Google Scholar PubMed
13. R. M. Erb, R. Libanori, N. Rothfuchs, A. R. Studart, Science 335 (2012) 199.10.1126/science.1210822Suche in Google Scholar PubMed
14. P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science 318 (2007) 80.10.1126/science.1143176Suche in Google Scholar PubMed
15. Y. Dzenis, Science 319 (2008) 419.10.1126/science.1151434Suche in Google Scholar PubMed
16. R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 297 (2002) 787.10.1126/science.1060928Suche in Google Scholar PubMed
17. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 339 (2013) 535.10.1126/science.1222453Suche in Google Scholar PubMed
18. B. S. Shim, J. Zhu, E. Jan, K. Critchley, S. Ho, P. Podsiadlo, K. Sun, N. A. Kotov, ACS Nano 3 (2009) 1711.10.1021/nn9002743Suche in Google Scholar PubMed
19. O. Breuer, U. Sundararaj, Polym. Compos. 25 (2004) 630.10.1002/pc.20058Suche in Google Scholar
20. J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun’ko, Carbon 44 (2006) 1624.10.1016/j.carbon.2006.02.038Suche in Google Scholar
21. E. T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61 (2001) 1899.10.1016/S0266-3538(01)00094-XSuche in Google Scholar
22. J. R. Wood, Q. Zhao, M. D. Frogley, E. R. Meurs, A. D. Prins, T. Peijs, D. J. Dunstan, H. D. Wagner, Phys. Rev. B 62 (2000) 7571.10.1103/PhysRevB.62.7571Suche in Google Scholar
23. M. S. Lundstrom, Nat. Mater. 10 (2011) 566.10.1038/nmat3079Suche in Google Scholar PubMed
24. N. A. Kotov, I. Dékány, J. H. Fendler, Adv. Mater. 8 (1996) 637.10.1002/adma.19960080806Suche in Google Scholar
25. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chemie Int. Ed. 48 (2009) 7752.10.1002/anie.200901678Suche in Google Scholar PubMed
26. S. Wan, J. Peng, L. Jiang, Q. Cheng, Adv. Mater. 28 (2016) 7862.10.1002/adma.201601934Suche in Google Scholar PubMed
27. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282.10.1038/nature04969Suche in Google Scholar PubMed
28. H. Sehaqui, Q. Zhou, L. A. Berglund, Soft Matter 7 (2011) 7342.10.1039/c1sm05325fSuche in Google Scholar
29. P. Podsiadlo, S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy, N. A. Kotov, Biomacromolecules 6 (2005) 2914.10.1021/bm050333uSuche in Google Scholar PubMed
30. C. Aulin, J. Netrval, L. Wågberg, T. Lindström, Soft Matter 6 (2010) 3298.10.1039/c001939aSuche in Google Scholar
31. A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, Adv. Funct. Mater. 14 (2004) 1124.10.1002/adfm.200305197Suche in Google Scholar
32. S. Liang, J. Wu, H. Tian, L. Zhang, J. Xu, ChemSusChem. 1 (2008) 558.10.1002/cssc.200800003Suche in Google Scholar PubMed
33. A. Stamboulis, C. A. Baillie, T. Peijs, Compos. Part A Appl. Sci. Manuf. 32 (2001) 1105.10.1016/S1359-835X(01)00032-XSuche in Google Scholar
34. Y. Zhou, P. F. Damasceno, B. S. Somashekar, M. Engel, F. Tian, J. Zhu, R. Huang, K. Johnson, C. McIntyre, K. Sun, M. Yang, P. F. Green, A. Ramamoorthy, S. C. Glotzer, N. A. Kotov, Nat. Commun. 9 (2018) 181.10.1038/s41467-017-02579-wSuche in Google Scholar PubMed PubMed Central
35. M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 42 (2013) 2986.10.1039/c2cs35310eSuche in Google Scholar PubMed
36. H.-B. Yao, Z.-H. Tan, H.-Y. Fang, S.-H. Yu, Angew. Chemie 49 (2010) 10127.10.1002/anie.201004748Suche in Google Scholar PubMed
37. S. Zhang, Y. Tang, B. Vlahovic, Nanoscale Res. Lett. 11 (2016) 80.10.1186/s11671-016-1286-zSuche in Google Scholar PubMed PubMed Central
38. J. A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603.10.1126/science.1182383Suche in Google Scholar PubMed
39. S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5 (2013) 1727.10.1039/c3nr33560gSuche in Google Scholar PubMed
40. M. R. Bockstaller, E. L. Thomas, J. Phys. Chem. B 107 (2003) 10017.10.1021/jp035286jSuche in Google Scholar
41. Y. Kim, B. Yeom, O. Arteaga, S. J. Yoo, S.-G. Lee, J.-G. Kim, N. A. Kotov, Nat. Mater. 15 (2016) 461.10.1038/nmat4525Suche in Google Scholar PubMed
42. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, Ravi V. Bellamkonda, Gabriel A. Silva, Nadine Wong Shi Kam, Fernando Patolsky, Laura Ballerini, Adv. Mater. 21 (2009) 3970.10.1002/adma.200801984Suche in Google Scholar
43. R. Murugan, S. Ramakrishna, Compos. Sci. Technol. 65 (2005) 2385.10.1016/j.compscitech.2005.07.022Suche in Google Scholar
44. S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler, Sci. Adv. 3 (2017) e1601939.10.1126/sciadv.1601939Suche in Google Scholar PubMed PubMed Central
45. P. V. Kamat, J. Phys. Chem. Lett. 2 (2011) 242.10.1021/jz101639vSuche in Google Scholar
46. W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Crit. Rev. Solid State Mat. Sci. 35 (2010) 52.10.1080/10408430903505036Suche in Google Scholar
47. A. K. Geim, K. S. Novoselov, Nat. Mater. 6 (2007) 183.10.1038/nmat1849Suche in Google Scholar PubMed
48. G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 7 (2014) 1307.10.1039/C3EE43182GSuche in Google Scholar
49. G. Nyström, A. Marais, E. Karabulut, L. Wågberg, Y. Cui, M. M. Hamedi, Nat. Commun. 6 (2015) 7259.10.1038/ncomms8259Suche in Google Scholar PubMed PubMed Central
50. N. C. Bigall, A.-K. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, A. Eychmüller, Angew. Chemie Int. Ed. 48 (2009) 9731.10.1002/anie.200902543Suche in Google Scholar PubMed
51. T. Hendel, V. Lesnyak, L. Kühn, A.-K. Herrmann, N. C. Bigall, L. Borchardt, S. Kaskel, N. Gaponik, A. Eychmüller, Adv. Funct. Mater. 23 (2013) 1903.10.1002/adfm.201201674Suche in Google Scholar
52. M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 132 (2010) 14067.10.1021/ja1072299Suche in Google Scholar PubMed
53. N. Zhang, H. Qiu, Y. Si, W. Wang, J. Gao, Carbon N. Y. 49 (2011) 827.10.1016/j.carbon.2010.10.024Suche in Google Scholar
54. M. A. Worsley, S. O. Kucheyev, J. D. Kuntz, T. Y. Olson, T. Y.-J. Han, A. V. Hamza, J. H. Satcher, T. F. Baumann, Chem. Mater. 23 (2011) 3054.10.1021/cm200426kSuche in Google Scholar
55. J. L. Mohanan, I. U. Arachchige, S. L. Brock, Science 307 (2005) 397.10.1126/science.1104226Suche in Google Scholar
56. K. H. Kim, M. Vural, M. F. Islam, Adv. Mater. 23 (2011) 2865.10.1002/adma.201100310Suche in Google Scholar PubMed
57. G. Decher, J.-D. Hong, Makromol. Chemie. Macromol. Symp. 46 (1991) 321.10.1002/masy.19910460145Suche in Google Scholar
58. G. Decher, Science 277 (1997) 1232.10.1126/science.277.5330.1232Suche in Google Scholar
59. C. Jiang, V. V. Tsukruk, Adv. Mater. 18 (2006) 829.10.1002/adma.200502444Suche in Google Scholar
60. S. W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn, P. T. Hammond, J. Am. Chem. Soc. 131 (2009) 671.10.1021/ja807059kSuche in Google Scholar PubMed
61. F. G. Aliev, M. A. Correa-Duarte, A. Mamedov, J. W. Ostrander, M. Giersig, L. M. Liz-Marzán, N. A. Kotov, Adv. Mater. 11 (1999) 1006.10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2Suche in Google Scholar
62. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, J. P. Hill, Chem. Lett. 43 (2014) 36.10.1246/cl.130987Suche in Google Scholar
63. J. S. Bendall, M. Paderi, F. Ghigliotti, N. Li Pira, V. Lambertini, V. Lesnyak, N. Gaponik, G. Visimberga, A. Eychmüller, C. M. S. Torres, M. E. Welland, C. Gieck, L. Marchese, Adv. Funct. Mater. 20 (2010) 3298.10.1002/adfm.201001191Suche in Google Scholar
64. H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, D. Li, Adv. Mater. 20 (2008) 3557.10.1002/adma.200800757Suche in Google Scholar
65. K. W. Putz, O. C. Compton, M. J. Palmeri, S. T. Nguyen, L. C. Brinson, Adv. Funct. Mater. 20 (2010) 3322.10.1002/adfm.201000723Suche in Google Scholar
66. J. R. Capadona, O. Van Den Berg, L. A. Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler, C. Weder, Nat. Nanotechnol. 2 (2007) 765.10.1038/nnano.2007.379Suche in Google Scholar
67. J. Zhu, H. Zhang, N. A. Kotov, ACS Nano 7 (2013) 4818.10.1021/nn400972tSuche in Google Scholar
68. B. S. Shim, J. Zhu, E. Jan, K. Critchley, N. A. Kotov, ACS Nano 4 (2010) 3725.10.1021/nn100026nSuche in Google Scholar
69. H. Zhang, J. Shih, J. Zhu, N. A. Kotov, Nano Lett. 12 (2012) 3391.10.1021/nl3015632Suche in Google Scholar
70. C. Picart, J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich, P. Schaaf, J.-C. Voegel, P. Lavalle, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 12531.10.1073/pnas.202486099Suche in Google Scholar
71. P. Podsiadlo, M. Michel, J. Lee, E. Verploegen, N. Wong Shi Kam, V. Ball, J. Lee, Y. Qi, A. J. Hart, P. T. Hammond, N. A. Kotov, Nano Lett. 8 (2008) 1762.10.1021/nl8011648Suche in Google Scholar PubMed
72. J. B. Schlenoff, S. T. Dubas, T. Farhat, Langmuir 16 (2000) 9968.10.1021/la001312iSuche in Google Scholar
73. J. G. Torres-Rendon, F. H. Schacher, S. Ifuku, A. Walther, Biomacromolecules 15 (2014) 2709.10.1021/bm500566mSuche in Google Scholar PubMed
74. H. Hu, M. Pauly, O. Felix, G. Decher, Nanoscale 9 (2017) 1307.10.1039/C6NR08045FSuche in Google Scholar
75. K. Ariga, J. P. Hill, Q. Ji, Phys. Chem. Chem. Phys. 9 (2007) 2319.10.1039/b700410aSuche in Google Scholar PubMed
76. Z. Y. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2 (2003) 413.10.1038/nmat906Suche in Google Scholar PubMed
77. P. A. Patel, J. Jeon, P. T. Mather, A. V. Dobrynin, P. A. Patel, J. Jeon, P. T. Mather, A. V. Dobrynin, Langmuir 21 (2005) 6113.10.1021/la050432tSuche in Google Scholar PubMed
78. J. Borges, J. F. Mano, Chem. Rev. 114 (2014) 8883.10.1021/cr400531vSuche in Google Scholar PubMed
79. Z. Qin, G. S. Jung, M. J. Kang, M. J. Buehler, Sci. Adv. 3 (2017) e1601536.10.1126/sciadv.1601536Suche in Google Scholar PubMed PubMed Central
80. D. Wen, W. Liu, D. Haubold, C. Zhu, M. Oschatz, M. Holzschuh, A. Wolf, F. Simon, S. Kaskel, A. Eychmüller, ACS Nano 10 (2016) 2559.10.1021/acsnano.5b07505Suche in Google Scholar PubMed PubMed Central
81. N. Gaponik, A.-K. K. Herrmann, A. Eychmüller, A. Eychmuller, J. Phys. Chem. Lett. 3 (2012) 8.10.1021/jz201357rSuche in Google Scholar
82. J. Zhu, M. Yang, A. Emre, J. H. Bahng, L. Xu, J. Yeom, B. Yeom, Y. Kim, K. Johnson, P. Green, N. A. Kotov, Angew. Chemie Int. Ed. 56 (2017) 11744.10.1002/anie.201703766Suche in Google Scholar PubMed
83. M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, N. A. Kotov, ACS Nano 5 (2011) 6945.10.1021/nn2014003Suche in Google Scholar PubMed PubMed Central
84. M. Yang, K. Cao, B. Yeom, M. D. Thouless, A. Waas, E. M. Arruda, N. A. Kotov, J. Compos. Mater. 49 (2015) 1873.10.1177/0021998315579230Suche in Google Scholar
85. L. Xu, X. Zhao, C. Xu, N. A. Kotov, Adv. Mater. 30 (2017) 1870007.10.1002/adma.201703343Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1169).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Alexander Eychmüller
- Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
- Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
- Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
- Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
- TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
- Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
- Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
- Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
- Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
- Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
- Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
- Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
- Towards Low-Toxic Colloidal Quantum Dots
- Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
- Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
- Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
- Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
- Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
- Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
- n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
- The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
- Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
- Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
- Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
- Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
- Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
- Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
- Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
- Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
- Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
- Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
- Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
- Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Alexander Eychmüller
- Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
- Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
- Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
- Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
- TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
- Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
- Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
- Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
- Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
- Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
- Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
- Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
- Towards Low-Toxic Colloidal Quantum Dots
- Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
- Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
- Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
- Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
- Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
- Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
- n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
- The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
- Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
- Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
- Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
- Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
- Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
- Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
- Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
- Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
- Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
- Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
- Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
- Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System