Startseite Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites

  • Jian Zhu , Douglas Watts und Nicholas A. Kotov EMAIL logo
Veröffentlicht/Copyright: 18. Juli 2018

Abstract

Layer-by-layer (LBL) assembly produces nanocomposites with distinctively high volume fractions of nanomaterials and nanometer scale controlled uniformity. Although deposition of one nanometer scale layer at a time leads to high performance composites, this deposition mode is also associated with the slow multilayer build-up. Exponential LBL, spin coating, turbo-LBL and other methods tremendously accelerate the multilayer build-up but often yield lower, strength, toughness, conductivity, etc. Here, we introduce gelation assisted layer-by-layer (gaLBL) deposition taking advantage of a repeating cycle of hydrogel formation and subsequent polymer infiltration demonstrated using aramid nanofiber (ANF) and epoxy resin (EPX) as deposition partners. Utilization of ANF gels increases the thickness of each deposited layer from 1–10 nm to 30–300 nm while retaining fine control of thickness in each layer, high volume fraction, and uniformity. While increasing the speed of the deposition, the high density of interfaces associated with nanofiber gels helps retain high mechanical properties. The ANF/EPX multilayer composites revealed a rare combination of properties that was unavailable in traditional aramid-based and other composites, namely, high ultimate strength of 505±47 MPa, high toughness of 50.1±9.8 MJ/m3, and high transparency. Interestingly, the composite also displayed close-to-zero thermal expansion. The constellation of these materials properties is unique both for quasi-anisotropic composites and unidirectional materials with nanofiber alignment. gaLBL demonstrates the capability to resolve the fundamental challenge between high-performance and scalability. The gelation-assisted layered deposition can be extended to other functional components including nanoparticle gels.

References

1. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res. 8 (1993) 1185.10.1557/JMR.1993.1185Suche in Google Scholar

2. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, I. A. Aksay, J. Mater. Res. 16 (2001) 2485.10.1557/JMR.2001.0340Suche in Google Scholar

3. K. E. Gunnison, M. Sarikaya, J. Liu, I. A. Aksay, MRS Proc. 255 (1991) 171.10.1557/PROC-255-171Suche in Google Scholar

4. H. D. Espinosa, J. E. Rim, F. Barthelat, M. J. Buehler, Prog. Mater. Sci. 54 (2009) 1059.10.1016/j.pmatsci.2009.05.001Suche in Google Scholar

5. T. E. Schäffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D. A. Walters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma, Chem. Mater. 9 (1997) 1731.10.1021/cm960429iSuche in Google Scholar

6. C. González, J. J. Vilatela, J. M. Molina-Aldareguía, C. S. Lopes, J. LLorca, Prog. Mater. Sci. 89 (2017) 194.10.1016/j.pmatsci.2017.04.005Suche in Google Scholar

7. N. Kotov, Nat. Mater. 3 (2004) 669.10.1038/nmat1224Suche in Google Scholar PubMed

8. A. A. Mamedov, N. A. Kotov, Langmuir 16 (2000) 5530.10.1021/la000560bSuche in Google Scholar

9. L. J. Bonderer, A. R. Studart, L. J. Gauckler, Science 319 (2008) 1069.10.1126/science.1148726Suche in Google Scholar PubMed

10. S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Science 311 (2006) 515.10.1126/science.1120937Suche in Google Scholar PubMed

11. L. B. Mao, H. L. Gao, H. B. Yao, L. Liu, H. Cölfen, G. Liu, S. M. Chen, S. K. Li, Y. X. Yan, Y. Y. Liu, S.-H. Yu. Science 354 (2016) 107.10.1126/science.aaf8991Suche in Google Scholar PubMed

12. Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, K. Liao, Adv. Mater. 24 (2012) 3426.10.1002/adma.201200452Suche in Google Scholar PubMed

13. R. M. Erb, R. Libanori, N. Rothfuchs, A. R. Studart, Science 335 (2012) 199.10.1126/science.1210822Suche in Google Scholar PubMed

14. P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy, N. A. Kotov, Science 318 (2007) 80.10.1126/science.1143176Suche in Google Scholar PubMed

15. Y. Dzenis, Science 319 (2008) 419.10.1126/science.1151434Suche in Google Scholar PubMed

16. R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 297 (2002) 787.10.1126/science.1060928Suche in Google Scholar PubMed

17. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 339 (2013) 535.10.1126/science.1222453Suche in Google Scholar PubMed

18. B. S. Shim, J. Zhu, E. Jan, K. Critchley, S. Ho, P. Podsiadlo, K. Sun, N. A. Kotov, ACS Nano 3 (2009) 1711.10.1021/nn9002743Suche in Google Scholar PubMed

19. O. Breuer, U. Sundararaj, Polym. Compos. 25 (2004) 630.10.1002/pc.20058Suche in Google Scholar

20. J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun’ko, Carbon 44 (2006) 1624.10.1016/j.carbon.2006.02.038Suche in Google Scholar

21. E. T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61 (2001) 1899.10.1016/S0266-3538(01)00094-XSuche in Google Scholar

22. J. R. Wood, Q. Zhao, M. D. Frogley, E. R. Meurs, A. D. Prins, T. Peijs, D. J. Dunstan, H. D. Wagner, Phys. Rev. B 62 (2000) 7571.10.1103/PhysRevB.62.7571Suche in Google Scholar

23. M. S. Lundstrom, Nat. Mater. 10 (2011) 566.10.1038/nmat3079Suche in Google Scholar PubMed

24. N. A. Kotov, I. Dékány, J. H. Fendler, Adv. Mater. 8 (1996) 637.10.1002/adma.19960080806Suche in Google Scholar

25. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chemie Int. Ed. 48 (2009) 7752.10.1002/anie.200901678Suche in Google Scholar PubMed

26. S. Wan, J. Peng, L. Jiang, Q. Cheng, Adv. Mater. 28 (2016) 7862.10.1002/adma.201601934Suche in Google Scholar PubMed

27. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282.10.1038/nature04969Suche in Google Scholar PubMed

28. H. Sehaqui, Q. Zhou, L. A. Berglund, Soft Matter 7 (2011) 7342.10.1039/c1sm05325fSuche in Google Scholar

29. P. Podsiadlo, S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy, N. A. Kotov, Biomacromolecules 6 (2005) 2914.10.1021/bm050333uSuche in Google Scholar PubMed

30. C. Aulin, J. Netrval, L. Wågberg, T. Lindström, Soft Matter 6 (2010) 3298.10.1039/c001939aSuche in Google Scholar

31. A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, Adv. Funct. Mater. 14 (2004) 1124.10.1002/adfm.200305197Suche in Google Scholar

32. S. Liang, J. Wu, H. Tian, L. Zhang, J. Xu, ChemSusChem. 1 (2008) 558.10.1002/cssc.200800003Suche in Google Scholar PubMed

33. A. Stamboulis, C. A. Baillie, T. Peijs, Compos. Part A Appl. Sci. Manuf. 32 (2001) 1105.10.1016/S1359-835X(01)00032-XSuche in Google Scholar

34. Y. Zhou, P. F. Damasceno, B. S. Somashekar, M. Engel, F. Tian, J. Zhu, R. Huang, K. Johnson, C. McIntyre, K. Sun, M. Yang, P. F. Green, A. Ramamoorthy, S. C. Glotzer, N. A. Kotov, Nat. Commun. 9 (2018) 181.10.1038/s41467-017-02579-wSuche in Google Scholar PubMed PubMed Central

35. M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 42 (2013) 2986.10.1039/c2cs35310eSuche in Google Scholar PubMed

36. H.-B. Yao, Z.-H. Tan, H.-Y. Fang, S.-H. Yu, Angew. Chemie 49 (2010) 10127.10.1002/anie.201004748Suche in Google Scholar PubMed

37. S. Zhang, Y. Tang, B. Vlahovic, Nanoscale Res. Lett. 11 (2016) 80.10.1186/s11671-016-1286-zSuche in Google Scholar PubMed PubMed Central

38. J. A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603.10.1126/science.1182383Suche in Google Scholar PubMed

39. S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5 (2013) 1727.10.1039/c3nr33560gSuche in Google Scholar PubMed

40. M. R. Bockstaller, E. L. Thomas, J. Phys. Chem. B 107 (2003) 10017.10.1021/jp035286jSuche in Google Scholar

41. Y. Kim, B. Yeom, O. Arteaga, S. J. Yoo, S.-G. Lee, J.-G. Kim, N. A. Kotov, Nat. Mater. 15 (2016) 461.10.1038/nmat4525Suche in Google Scholar PubMed

42. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, Ravi V. Bellamkonda, Gabriel A. Silva, Nadine Wong Shi Kam, Fernando Patolsky, Laura Ballerini, Adv. Mater. 21 (2009) 3970.10.1002/adma.200801984Suche in Google Scholar

43. R. Murugan, S. Ramakrishna, Compos. Sci. Technol. 65 (2005) 2385.10.1016/j.compscitech.2005.07.022Suche in Google Scholar

44. S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler, Sci. Adv. 3 (2017) e1601939.10.1126/sciadv.1601939Suche in Google Scholar PubMed PubMed Central

45. P. V. Kamat, J. Phys. Chem. Lett. 2 (2011) 242.10.1021/jz101639vSuche in Google Scholar

46. W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Crit. Rev. Solid State Mat. Sci. 35 (2010) 52.10.1080/10408430903505036Suche in Google Scholar

47. A. K. Geim, K. S. Novoselov, Nat. Mater. 6 (2007) 183.10.1038/nmat1849Suche in Google Scholar PubMed

48. G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 7 (2014) 1307.10.1039/C3EE43182GSuche in Google Scholar

49. G. Nyström, A. Marais, E. Karabulut, L. Wågberg, Y. Cui, M. M. Hamedi, Nat. Commun. 6 (2015) 7259.10.1038/ncomms8259Suche in Google Scholar PubMed PubMed Central

50. N. C. Bigall, A.-K. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, A. Eychmüller, Angew. Chemie Int. Ed. 48 (2009) 9731.10.1002/anie.200902543Suche in Google Scholar PubMed

51. T. Hendel, V. Lesnyak, L. Kühn, A.-K. Herrmann, N. C. Bigall, L. Borchardt, S. Kaskel, N. Gaponik, A. Eychmüller, Adv. Funct. Mater. 23 (2013) 1903.10.1002/adfm.201201674Suche in Google Scholar

52. M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 132 (2010) 14067.10.1021/ja1072299Suche in Google Scholar PubMed

53. N. Zhang, H. Qiu, Y. Si, W. Wang, J. Gao, Carbon N. Y. 49 (2011) 827.10.1016/j.carbon.2010.10.024Suche in Google Scholar

54. M. A. Worsley, S. O. Kucheyev, J. D. Kuntz, T. Y. Olson, T. Y.-J. Han, A. V. Hamza, J. H. Satcher, T. F. Baumann, Chem. Mater. 23 (2011) 3054.10.1021/cm200426kSuche in Google Scholar

55. J. L. Mohanan, I. U. Arachchige, S. L. Brock, Science 307 (2005) 397.10.1126/science.1104226Suche in Google Scholar

56. K. H. Kim, M. Vural, M. F. Islam, Adv. Mater. 23 (2011) 2865.10.1002/adma.201100310Suche in Google Scholar PubMed

57. G. Decher, J.-D. Hong, Makromol. Chemie. Macromol. Symp. 46 (1991) 321.10.1002/masy.19910460145Suche in Google Scholar

58. G. Decher, Science 277 (1997) 1232.10.1126/science.277.5330.1232Suche in Google Scholar

59. C. Jiang, V. V. Tsukruk, Adv. Mater. 18 (2006) 829.10.1002/adma.200502444Suche in Google Scholar

60. S. W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn, P. T. Hammond, J. Am. Chem. Soc. 131 (2009) 671.10.1021/ja807059kSuche in Google Scholar PubMed

61. F. G. Aliev, M. A. Correa-Duarte, A. Mamedov, J. W. Ostrander, M. Giersig, L. M. Liz-Marzán, N. A. Kotov, Adv. Mater. 11 (1999) 1006.10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2Suche in Google Scholar

62. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, J. P. Hill, Chem. Lett. 43 (2014) 36.10.1246/cl.130987Suche in Google Scholar

63. J. S. Bendall, M. Paderi, F. Ghigliotti, N. Li Pira, V. Lambertini, V. Lesnyak, N. Gaponik, G. Visimberga, A. Eychmüller, C. M. S. Torres, M. E. Welland, C. Gieck, L. Marchese, Adv. Funct. Mater. 20 (2010) 3298.10.1002/adfm.201001191Suche in Google Scholar

64. H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, D. Li, Adv. Mater. 20 (2008) 3557.10.1002/adma.200800757Suche in Google Scholar

65. K. W. Putz, O. C. Compton, M. J. Palmeri, S. T. Nguyen, L. C. Brinson, Adv. Funct. Mater. 20 (2010) 3322.10.1002/adfm.201000723Suche in Google Scholar

66. J. R. Capadona, O. Van Den Berg, L. A. Capadona, M. Schroeter, S. J. Rowan, D. J. Tyler, C. Weder, Nat. Nanotechnol. 2 (2007) 765.10.1038/nnano.2007.379Suche in Google Scholar

67. J. Zhu, H. Zhang, N. A. Kotov, ACS Nano 7 (2013) 4818.10.1021/nn400972tSuche in Google Scholar

68. B. S. Shim, J. Zhu, E. Jan, K. Critchley, N. A. Kotov, ACS Nano 4 (2010) 3725.10.1021/nn100026nSuche in Google Scholar

69. H. Zhang, J. Shih, J. Zhu, N. A. Kotov, Nano Lett. 12 (2012) 3391.10.1021/nl3015632Suche in Google Scholar

70. C. Picart, J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich, P. Schaaf, J.-C. Voegel, P. Lavalle, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 12531.10.1073/pnas.202486099Suche in Google Scholar

71. P. Podsiadlo, M. Michel, J. Lee, E. Verploegen, N. Wong Shi Kam, V. Ball, J. Lee, Y. Qi, A. J. Hart, P. T. Hammond, N. A. Kotov, Nano Lett. 8 (2008) 1762.10.1021/nl8011648Suche in Google Scholar PubMed

72. J. B. Schlenoff, S. T. Dubas, T. Farhat, Langmuir 16 (2000) 9968.10.1021/la001312iSuche in Google Scholar

73. J. G. Torres-Rendon, F. H. Schacher, S. Ifuku, A. Walther, Biomacromolecules 15 (2014) 2709.10.1021/bm500566mSuche in Google Scholar PubMed

74. H. Hu, M. Pauly, O. Felix, G. Decher, Nanoscale 9 (2017) 1307.10.1039/C6NR08045FSuche in Google Scholar

75. K. Ariga, J. P. Hill, Q. Ji, Phys. Chem. Chem. Phys. 9 (2007) 2319.10.1039/b700410aSuche in Google Scholar PubMed

76. Z. Y. Tang, N. A. Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2 (2003) 413.10.1038/nmat906Suche in Google Scholar PubMed

77. P. A. Patel, J. Jeon, P. T. Mather, A. V. Dobrynin, P. A. Patel, J. Jeon, P. T. Mather, A. V. Dobrynin, Langmuir 21 (2005) 6113.10.1021/la050432tSuche in Google Scholar PubMed

78. J. Borges, J. F. Mano, Chem. Rev. 114 (2014) 8883.10.1021/cr400531vSuche in Google Scholar PubMed

79. Z. Qin, G. S. Jung, M. J. Kang, M. J. Buehler, Sci. Adv. 3 (2017) e1601536.10.1126/sciadv.1601536Suche in Google Scholar PubMed PubMed Central

80. D. Wen, W. Liu, D. Haubold, C. Zhu, M. Oschatz, M. Holzschuh, A. Wolf, F. Simon, S. Kaskel, A. Eychmüller, ACS Nano 10 (2016) 2559.10.1021/acsnano.5b07505Suche in Google Scholar PubMed PubMed Central

81. N. Gaponik, A.-K. K. Herrmann, A. Eychmüller, A. Eychmuller, J. Phys. Chem. Lett. 3 (2012) 8.10.1021/jz201357rSuche in Google Scholar

82. J. Zhu, M. Yang, A. Emre, J. H. Bahng, L. Xu, J. Yeom, B. Yeom, Y. Kim, K. Johnson, P. Green, N. A. Kotov, Angew. Chemie Int. Ed. 56 (2017) 11744.10.1002/anie.201703766Suche in Google Scholar PubMed

83. M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, N. A. Kotov, ACS Nano 5 (2011) 6945.10.1021/nn2014003Suche in Google Scholar PubMed PubMed Central

84. M. Yang, K. Cao, B. Yeom, M. D. Thouless, A. Waas, E. M. Arruda, N. A. Kotov, J. Compos. Mater. 49 (2015) 1873.10.1177/0021998315579230Suche in Google Scholar

85. L. Xu, X. Zhao, C. Xu, N. A. Kotov, Adv. Mater. 30 (2017) 1870007.10.1002/adma.201703343Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1169).


Received: 2018-02-28
Accepted: 2018-04-16
Published Online: 2018-07-18
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1169/html
Button zum nach oben scrollen