Home Physical Sciences n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
Article
Licensed
Unlicensed Requires Authentication

n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance

  • Soniya Gahlawat , Nusrat Rashid and Pravin P. Ingole EMAIL logo
Published/Copyright: March 30, 2018

Abstract

Here, we report the enhanced photoelectrochemical performance of surface modified hematite thin films with n-type copper oxide nanostructures (Cu2O/Fe2O3) obtained through simple electrochemical deposition method. The thickness and amount of cuprous oxide layer were varied by simply changing the number of electrodeposition cycles (viz. 5, 10, 25, 50 and 100) in order to understand its thermodynamic and kinetic influence on the photoelectrochemical activity of the resultant nano-heterostructures. Structural and morphological characteristics of the obtained Cu2O/Fe2O3 films have been studied by absorption spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Electrochemical investigations such as linear sweep voltammetry, Mott–Schottky analysis, and electrochemical impedance spectroscopy suggested the formation of n-type Cu2O layers over the hematite films with varying charge-carrier densities, ranging from 0.56×1019 to 3.94×1019 cm−3, that varies with the number of cycles of electrochemical deposition. Besides, the thickness of deposited cuprous oxide layer is noted to alter the net electrochemical and photo-electrochemical response of the base material. An interesting, peak event was recorded for a particular thickness of the cuprous oxide layer (obtained after 25 cycles of electrochemical deposition) below and above which the efficiency of catalyst was impaired. The heterojunction obtained thus, followed well known Z-scheme and gave appreciable increment in the photocurrent response.

Acknowledgment

SG thanks CSIR-India and NR thanks UGC-India for their research fellowships. PPI thanks DST-SERB for the funding through research projects SB/EMEQ-339/2014 and SB/FT/CS-047/2014. Authors are thankful to Central Research Facility and Nanoscale research facilities of IIT Delhi for assistance in material characterization.

References

1. S. Shen, J. Zhou, C. L. Dong, Y. Hu, E. N. Tseng, P. Guo, L. Guo, S. S. Mao, Sci. Rep. 4, (2014) 1.10.1038/srep06627Search in Google Scholar PubMed PubMed Central

2. S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Sustain. Energy Fuels 1 (2017) 145.10.1039/C6SE00001KSearch in Google Scholar

3. D. E. Schipper, Z. Zhao, A. P. Leitner, L. Xie, F. Qin, M. K. Alam, S. Chen, D. Wang, Z. Ren, Z. Wang, J. Bao, K. H. Whitmire, ACS Nano 11 (2017) 4051.10.1021/acsnano.7b00704Search in Google Scholar PubMed

4. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520.10.1039/C3CS60378DSearch in Google Scholar

5. T. W. Kim, K. S. Choi, Science 343 (2014) 990.10.1126/science.1246913Search in Google Scholar PubMed

6. A. Kudo, Y. Miseki, Soc. Rev. 38 (2009) 253.10.1039/B800489GSearch in Google Scholar

7. J. M. Chem, J. Mater. Chem. A 3 (2015) 14942.10.1039/C5TA02974KSearch in Google Scholar

8. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, J. S. Lee, Sci. Rep. 3 (2013) 2681.10.1038/srep02681Search in Google Scholar PubMed PubMed Central

9. G. Segev, H. Dotan, K. D. Malviya, A. Kay, M. T. Mayer, M. Grätzel, A. Rothschild, Adv. Energy Mater. 6 (2016).10.1002/aenm.201500817Search in Google Scholar

10. K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem. 4 (2011) 432.10.1002/cssc.201000416Search in Google Scholar PubMed

11. Y. Lin, S. Zhou, S. W. Sheehan, D. Wang, J. Am. Chem. Soc. 133 (2011) 2398.10.1021/ja110741zSearch in Google Scholar PubMed

12. J. Wang, C. Du, Q. Peng, J. Yang, Y. Wen, B. Shan, R. Chen, Int. J. Hydrogen Energy 42 (2017) 29140.10.1016/j.ijhydene.2017.10.080Search in Google Scholar

13. D. Wang, H. Chen, G. Chang, X. Lin, Y. Zhang, A. Aldalbahi, C. Peng, J. Wang, C. Fan, ACS Appl. Mater. Interfaces 7 (2015) 14072.10.1021/acsami.5b03298Search in Google Scholar PubMed

14. J. J. M. Vequizo, C. Zhang, M. Ichimura, Thin Solid Films 597 (2015) 83.10.1016/j.tsf.2015.11.034Search in Google Scholar

15. D. Sharma, S. Upadhyay, A. Verma, V. R. Satsangi, R. Shrivastav, S. Dass, Thin Solid Films 574 (2015) 125.10.1016/j.tsf.2014.12.003Search in Google Scholar

16. Q. Peng, J. Wang, Z. Feng, C. Du, Y. Wen, B. Shan, R. Chen, J. Phys. Chem. C 121 (2017) 12991.10.1021/acs.jpcc.7b01817Search in Google Scholar

17. J. F. de Brito, F. Tavella, C. Genovese, C. Ampelli, M. V. B. Zanoni, G. Centi, S. Perathoner, Appl. Catal. B Environ. 224 (2018) 136.10.1016/j.apcatb.2017.09.071Search in Google Scholar

18. E. L. Tsege, S. K. Cho, L. T. Tufa, V. T. Tran, J. Lee, H. K. Kim, Y. H. Hwang, J. Mater. Sci. 53 (2018) 2725.10.1007/s10853-017-1711-4Search in Google Scholar

19. L. Wanga, M. Taob, Electrochem. Solid-State Lett. 10 (2007) H248.Search in Google Scholar

20. N. Bhandary, S. Basu, P. P. Ingole, Electrochim. Acta. 212 (2016) 122.10.1016/j.electacta.2016.06.143Search in Google Scholar

21. N. Bhandary, A. P. Singh, P. P. Ingole, S. Basu, RSC Adv. 6 (2016) 35239.10.1039/C6RA03984GSearch in Google Scholar

22. M. T. Mayer, Y. Lin, G. Yuan, D. Wang, Acc. Chem. Res. 46 (2013) 1558.10.1021/ar300302zSearch in Google Scholar PubMed

23. S. Ho-Kimura, S. J. A. Moniz, J. Tang, I. P. Parkin, ACS Sustain. Chem. Eng. 3 (2015) 710.10.1021/acssuschemeng.5b00014Search in Google Scholar

24. R. S. Schrebler, L. Ballesteros, A. Burgos, E. C. Muñoz, P. Grez, D. Leinen, F. Martín, J. R. R. Barrado, E. A. Dalchiele, J. Electrochem. Soc. 158 (2011) D500.10.1149/1.3599059Search in Google Scholar

25. R. Schrebler, C. Llewelyn, F. Vera, P. Cury, E. Muñoz, R. del Río, H. G. Meier, R. Córdova, E. A. Dalchiele, Solid-State Lett. 10 (2007) D95.10.1149/1.2756160Search in Google Scholar

26. D. H. Taffa, I. Hamm, C. Dunkel, I. Sinev, D. Bahnemann, M. Wark, RSC Adv. 5 (2015) 103512.10.1039/C5RA21290ASearch in Google Scholar

27. N. Kazemi, A. Maghsoudipour, T. Ebadzadeh, EPJ Web Conf. 33 (2012) 11.10.1051/epjconf/20123302007Search in Google Scholar

28. R. Franking, L. Li, M. A. Lukowski, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Energy Environ. Sci. 6 (2013) 500.10.1039/C2EE23837CSearch in Google Scholar

29. S. Y. Gurudayal, M. H. Chiam, P. S. Kumar, H. L. Bassi, J. Seng, L. H. Barber, Wong. ACS Appl. Mater. Interfaces. 6 (2014) 5852.10.1021/am500643ySearch in Google Scholar PubMed

30. H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 4, (2011) 958.10.1039/C0EE00570CSearch in Google Scholar

31. Y. Xu, M. A. A. Schoonen, Am. Mineral. 85 (2000) 543.10.2138/am-2000-0416Search in Google Scholar

32. L. K. Tsui, L. Wu, N. Swami, G. Zangari, ECS Electrochem. Lett. 1 (2012) D-15.10.1149/2.008202eelSearch in Google Scholar

33. N. Bhandary, A. P. Singh, S. Kumar, P. P. Ingole, G. S. Thakur, A. K. Ganguli, S. Basu, ChemSusChem 9 (2016) 1.10.1002/cssc.201600740Search in Google Scholar PubMed

34. S. S. Shinde, R. A. Bansode, C. H. Bhosale, K. Y. Rajpure, J. Semicond. 32 (2011) 013001.10.1088/1674-4926/32/1/013001Search in Google Scholar

35. X. M. Cai, X. Q. Su, F. Ye, H. Wang, X. Q. Tian, D. P. Zhang, P. Fan, J. T. Luo, Z. H. Zheng, G. X. Liang, V. A. L. Roy, Appl. Phys. Lett. 107 (2015) 083901.10.1063/1.4928527Search in Google Scholar

36. L. Wanga, M. Taob, Electrochem. Solid-State Lett. 10 (2007) H248.10.1149/1.2748632Search in Google Scholar

37. B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang, G. Liao, Nanoscale Res. Lett. 8 (2013) 462.10.1186/1556-276X-8-462Search in Google Scholar PubMed PubMed Central

38. T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng, Q. Xuec, S. Yang, Nanoscale 7 (2015) 2933.10.1039/C4NR07024KSearch in Google Scholar

39. A. Hankin, J. C. Alexander, G. H. Kelsall, Phys. Chem. Chem. Phys. 16 (2014) 16176.10.1039/C4CP00096JSearch in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1140).


Received: 2018-02-01
Accepted: 2018-02-28
Published Online: 2018-03-30
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 28.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1140/html
Scroll to top button