Startseite Naturwissenschaften Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems

  • Christoph Haisch , Barbara N. Nunes , Jenny Schneider , Detlef Bahnemann und Antonio Otavio T. Patrocinio EMAIL logo
Veröffentlicht/Copyright: 16. Juni 2018

Abstract

Being part of the development of environmentally clean and safe sustainable technologies photocatalysis is attracting increasing attention. During the last decade, great attention has been paid to the synthesis of different photocatalysts possessing high photocatalytic activity, whereas fundamental studies concerning the underlying photocatalytic processes have rarely been executed. The knowledge of these processes is, however, of utmost importance for the understanding of the reaction mechanism and thus for a better design of photocatalytic systems. The transient absorption spectroscopy (TAS) is one widely used method to study such fundamental processes. The present review paper focuses on the application of TAS in the UV-Vis-IR regions to investigate the charge carrier dynamics in ultrafast and nano-to-millisecond time regime. Hereby, the photo induced processes occurring in different materials will be discussed. Moreover, further attention is also paid to nanocomposite-based systems, in which different materials are used concomitantly to promote more efficient photocatalytic processes.

Acknowledgments

This work was supported by Fundacão de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the german Federal Ministry of Education and Research (BMBF). A.O.T.P. is also thankful to Alexander von Humboldt Foundation for the fellowship in Germany.

References

1. K. W. Guo, Int. J. Energy Res. 36 (2012) 1.10.1002/er.1928Suche in Google Scholar

2. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229.10.1002/adma.201102752Suche in Google Scholar PubMed

3. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603.10.1039/C5CS00838GSuche in Google Scholar PubMed

4. R. G. W. Norrish, G. Porter, Nature 164 (1949) 658.10.1038/164658a0Suche in Google Scholar

5. M. Eigen, Discuss. Faraday Soc. 17 (1954) 194.10.1039/DF9541700194Suche in Google Scholar

6. G. Porter, Proc. R. Soc. A Math. Phys. Eng. Sci. 200 (1950) 284.10.1098/rspa.1950.0018Suche in Google Scholar

7. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.10.1021/cr00033a004Suche in Google Scholar

8. N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, J. Phys. Chem. 99 (1995) 16655.10.1021/j100045a027Suche in Google Scholar

9. D. Bahnemann, A. Henglein, J. Lilie, L. Spanhel, J. Phys. Chem. 88 (1984) 709.10.1021/j150648a018Suche in Google Scholar

10. M. Grätzel, A. J. Frank, J. Phys. Chem. 86 (1982) 2964.10.1021/j100212a031Suche in Google Scholar

11. I. A. Shkrob, M. C. Sauer, J. Phys. Chem. B 108 (2004) 12497.10.1021/jp047736tSuche in Google Scholar

12. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, J. Phys. Chem. B 104 (2000) 538.10.1021/jp991085xSuche in Google Scholar

13. T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108 (2004) 3817.10.1021/jp031305dSuche in Google Scholar

14. T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, Chem. Phys. Lett. 438 (2007) 268.10.1016/j.cplett.2007.03.017Suche in Google Scholar

15. Y. Tamaki, A. Furube, R. Katoh, M. Murai, K. Hara, H. Arakawa, M. Tachiya, Comptes Rendus Chim. 9 (2006) 268.10.1016/j.crci.2005.05.018Suche in Google Scholar

16. Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, A. Furube, J. Phys. Chem. C 113 (2009) 11741.10.1021/jp901833jSuche in Google Scholar

17. C. J. Willsher, J. Photochem. 28 (1985) 229.10.1016/0047-2670(85)87034-9Suche in Google Scholar

18. R. W. Kessler, G. Krabichler, S. Uhl, D. Oelkrug, W. P. Hagan, J. Hyslop, F. Wilkinson, Opt. Acta (Lond). 30 (1983) 1099.10.1080/713821340Suche in Google Scholar

19. A. Yamakata, J. J. M. Vequizo, H. Matsunaga, J. Phys. Chem. C 119 (2015) 24538.10.1021/acs.jpcc.5b09236Suche in Google Scholar

20. A. Kafizas, X. Wang, S. R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I. P. Parkin, J. R. Durrant, J. Phys. Chem. A 120 (2016) 715.10.1021/acs.jpca.5b11567Suche in Google Scholar PubMed

21. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 114 (2014) 9919.10.1021/cr5001892Suche in Google Scholar PubMed

22. X. Yang, N. Tamai, Phys. Chem. Chem. Phys. 3 (2001) 3393.10.1039/b101721gSuche in Google Scholar

23. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Phys. Chem. Chem. Phys. 9 (2007) 1453.10.1039/B617552JSuche in Google Scholar PubMed

24. D. E. Skinner, D. P. Colombo, J. J. Cavaleri, R. M. Bowman, J. Phys. Chem. 99 (1995) 7853.10.1021/j100020a003Suche in Google Scholar

25. J. J. M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, ACS Catal. 7 (2017) 2644.10.1021/acscatal.7b00131Suche in Google Scholar

26. M. Sachs, E. Pastor, A. Kafizas, J. R. Durrant, J. Phys. Chem. Lett. 7 (2016) 3742.10.1021/acs.jpclett.6b01501Suche in Google Scholar PubMed PubMed Central

27. P. V. Kamat, T. W. Ebbesen, N. M. Dimitrijević, A. J. Nozik, Chem. Phys. Lett. 157 (1989) 384.10.1016/0009-2614(89)87267-7Suche in Google Scholar

28. N. Serpone, M. A. Jamieson, J. Ramsden, Phys. Lett. 115 (1985) 473.10.1016/0009-2614(85)85173-3Suche in Google Scholar

29. Y. Nosaka, H. Miyama, M. Terauchi, T. Kobayashi, J. Phys. Chem. 255 (1988) 6521.10.1021/j100313a003Suche in Google Scholar

30. S. D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chemie – Int. Ed. 49 (2010) 6405.10.1002/anie.201003110Suche in Google Scholar PubMed

31. K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem. 4 (2011) 432.10.1002/cssc.201000416Suche in Google Scholar PubMed

32. Z. Huang, Y. Lin, X. Xiang, W. Rodríguez-Córdoba, K. J. McDonald, K. S. Hagen, K.-S. Choi, B. S. Brunschwig, D. G. Musaev, C. L. Hill, Energy Environ. Sci. 5 (2012) 8923.10.1039/c2ee22681bSuche in Google Scholar

33. D. K. Bora, A. Braun, E. C. Constable, Energy Environ. Sci. 6 (2013) 407.10.1039/C2EE23668KSuche in Google Scholar

34. P. Saurabh Bassi, L. Helena Wong, J. Barber, Phys. Chem. Chem. Phys. 16 (2014) 11834.10.1039/c3cp55174aSuche in Google Scholar PubMed

35. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, J. Z. Zhang, J. Phys. Chem. B 102 (1998) 770.10.1021/jp973149eSuche in Google Scholar

36. B. C. Fitzmorris, J. M. Patete, J. Smith, X. Mascorro, S. Adams, S. S. Wong, J. Z. Zhang, ChemSusChem. 6 (2013) 1907.10.1002/cssc.201300571Suche in Google Scholar PubMed

37. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119.10.1021/nl200708ySuche in Google Scholar PubMed

38. T. P. Ruoko, K. Kaunisto, M. Bärtsch, J. Pohjola, A. Hiltunen, M. Niederberger, N. V. Tkachenko, H. Lemmetyinen, J. Phys. Chem. Lett. 6 (2015) 2859.10.1021/acs.jpclett.5b01128Suche in Google Scholar PubMed

39. S. R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S. D. Tilley, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 136 (2014) 9854.10.1021/ja504473eSuche in Google Scholar PubMed PubMed Central

40. H. Zhang, Y. Chen, R. Lu, R. Li, A. Yu, Phys. Chem. Chem. Phys. 18 (2016) 14904.10.1039/C6CP01600FSuche in Google Scholar

41. J. D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chemie – Int. Ed. 55 (2016) 9389.10.1002/anie.201603990Suche in Google Scholar PubMed

42. Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 115 (2011) 4594.10.1021/jp112424zSuche in Google Scholar

43. E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 11 (2011) 1792.10.1021/nl200409xSuche in Google Scholar PubMed

44. E. Conca, M. Aresti, M. Saba, M. F. Casula, F. Quochi, G. Mula, D. Loche, M. R. Kim, L. Manna, A. Corrias, Nanoscale 6 (2014) 2238.10.1039/C3NR05567ASuche in Google Scholar PubMed

45. K. Wu, Q. Li, Y. Jia, J. R. McBride, Z. X. Xie, T. Lian, ACS Nano 9 (2015) 961.10.1021/nn506796mSuche in Google Scholar PubMed

46. W. D. Kim, J. H. Kim, S. Lee, S. Lee, J. Y. Woo, K. Lee, W. S. Chae, S. Jeong, W. K. Bae, J. A. McGuire, Chem. Mater. 28 (2016) 962.10.1021/acs.chemmater.5b04790Suche in Google Scholar

47. W. Li, J. R. Lee, F. Jäckel, ACS Appl. Mater. Interfaces 8 (2016) 29434.10.1021/acsami.6b09364Suche in Google Scholar PubMed

48. P. Rukenstein, A. Teitelboim, M. Volokh, M. Diab, D. Oron, T. Mokari, J. Phys. Chem. C 120 (2016) 15453.10.1021/acs.jpcc.6b04151Suche in Google Scholar

49. I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C 119 (2015) 20792.10.1021/acs.jpcc.5b05128Suche in Google Scholar

50. F. Meng, J. Li, S. K. Cushing, J. Bright, M. Zhi, J. D. Rowley, Z. Hong, A. Manivannan, A. D. Bristow, N. Wu, ACS Catal. 3 (2013) 746.10.1021/cs300740eSuche in Google Scholar

51. J. Huang, Q. Shang, Y. Huang, F. Tang, Q. Zhang, Q. Liu, S. Jiang, F. Hu, W. Liu, Y. Luo, Angew. Chemie – Int. Ed. 55 (2016) 2137.10.1002/anie.201510642Suche in Google Scholar PubMed

52. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, Chem. Phys. 285 (2002) 31.10.1016/S0301-0104(02)00686-9Suche in Google Scholar

53. O. C. Compton, E. C. Carroll, J. Y. Kim, D. S. Larsen, F. E. Osterloh, J. Phys. Chem. C 111 (2007) 14589.10.1021/jp0751155Suche in Google Scholar

54. Y. Zhao, P. Chen, B. Zhang, D. S. Su, S. Zhang, L. Tian, J. Lu, Z. Li, X. Cao, B. Wang, Chem. – A Eur. J. 18 (2012) 11949.10.1002/chem.201201065Suche in Google Scholar PubMed

55. A. M. Peiró, C. Colombo, G. Doyle, J. Nelson, A. Mills, J. R. Durrant, J. Phys. Chem. B 110 (2006) 23255.10.1021/jp064591cSuche in Google Scholar PubMed

56. A. Yamakata, T. Ishibashi, K. Takeshita, H. Onishi, Top. Catal. 35 (2005) 211.10.1007/s11244-005-3826-0Suche in Google Scholar

57. P. Salvador, J. Phys. Chem. C 111 (2007) 17038.10.1021/jp074451iSuche in Google Scholar

58. A. Imanishi, K. T. Okamura, N. Ohashi, R. Nakamura, Y. Nakato, J. Amer. Chem. Soc. 129 (2007) 11569.10.1021/ja073206+Suche in Google Scholar PubMed

59. D. W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. B 101 (1997) 4265.10.1021/jp9639915Suche in Google Scholar

60. A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (2010) 4208.10.1021/jp909993wSuche in Google Scholar

61. R. T. Williams, K. B. Ucer, G. Xiong, H. M. Yochum, L. G. Grigorjeva, D. K. Millers, G. Corradi, Radiat. Eff. Defects Solids 155 (2001) 265.10.1080/10420150108214125Suche in Google Scholar

62. S. H. Szczepankiewicz, J. A. Moss, M. R. Hoffmann, J. Phys. Chem. B 106 (2002) 2922.10.1021/jp004244hSuche in Google Scholar

63. A. J. Cowan, W. Leng, P. R. F. Barnes, D. R. Klug, J. R. Durrant, Phys. Chem. Chem. Phys. 15 (2013) 8772.10.1039/c3cp50318fSuche in Google Scholar PubMed

64. N. C. Arbour, D. K. Sharma, C. H. Langford, J. Phys. Chem. 94 (1990) 331.10.1021/j100364a056Suche in Google Scholar

65. R. Katoh, A. Furube, K. I. Yamanaka, T. Morikawa, J. Phys. Chem. Lett. 1 (2010) 3261.10.1021/jz1011548Suche in Google Scholar

66. J. Tang, A. J. Cowan, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 115 (2011) 3143.10.1021/jp1080093Suche in Google Scholar

67. L. Jing, J. Zhou, J. R. Durrant, J. Tang, D. Liu, H. Fu, Energy Environ. Sci. 5 (2012) 6552.10.1039/c2ee03383fSuche in Google Scholar

68. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, T. Majima, J. Phys. Chem. B 108 (2004) 19299.10.1021/jp0470593Suche in Google Scholar

69. Y. Murakami, J. Nishino, T. Mesaki, Y. Nosaka, Lett. 44 (2011) 88.10.1080/00387011003699683Suche in Google Scholar

70. D. Lawless, N. Serpone, D. Meisel, J. Phys. Chem. 95 (1991) 5166.10.1021/j100166a047Suche in Google Scholar

71. Z. Zhang, J. T. Yates, Chem. Rev. 112 (2012) 5520.10.1021/cr3000626Suche in Google Scholar PubMed

72. X. Wang, A. Kafizas, X. Li, S. J. A. Moniz, P. J. T. Reardon, J. Tang, I. P. Parkin, J. R. Durrant, J. Phys. Chem. C 119 (2015) 10439.10.1021/acs.jpcc.5b01858Suche in Google Scholar

73. A. O. T. Patrocinio, J. Schneider, M. D. França, L. M. Santos, B. P. Caixeta, A. E. H. Machado, D. W. Bahnemann, RSC Adv. 5 (2015) 70536.10.1039/C5RA13291FSuche in Google Scholar

74. L. Jing, Y. Cao, H. Cui, J. R. Durrant, J. Tang, D. Liu, H. Fu, Chem. Commun. 48 (2012) 10775.10.1039/c2cc34973fSuche in Google Scholar PubMed

75. Y. Cao, L. Jing, X. Shi, Y. Luan, J. R. Durrant, J. Tang, H. Fu, Phys. Chem. Chem. Phys. 14 (2012) 8530.10.1039/c2cp41167aSuche in Google Scholar PubMed

76. S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. Klug, J. R. Durrant, Chem. Commun. (Camb). 47 (2011) 716.10.1039/C0CC03627GSuche in Google Scholar

77. M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, Pnas 109 (2012) 15640.10.1073/pnas.1118326109Suche in Google Scholar PubMed PubMed Central

78. I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 97 (1993) 11064.10.1021/j100144a027Suche in Google Scholar

79. S. Hotchandani, I. Bedja, R. Fessenden, P. Kamat, Langmuir 10 (1994) 17.10.1021/la00013a600Suche in Google Scholar

80. F. M. Pesci, A. J. Cowan, B. D. Alexander, J. R. Durrant, D. R. Klug, J. Phys. Chem. Lett. 2 (2011) 1900.10.1021/jz200839nSuche in Google Scholar

81. N. Aiga, Q. Jia, K. Watanabe, A. Kudo, T. Sugimoto, Y. Matsumoto, J. Phys. Chem. C 117 (2013) 9881.10.1021/jp4013027Suche in Google Scholar

82. Y. Ma, S. R. Pendlebury, A. Reynal, F. le Formal, J. R. Durrant, Chem. Sci. 5 (2014) 2964.10.1039/C4SC00469HSuche in Google Scholar

83. J. Schneider, K. Nikitin, M. Wark, D. W. Bahnemann, R. Marschall, Phys. Chem. Chem. Phys. 18 (2016) 10719.10.1039/C5CP07115ASuche in Google Scholar PubMed

84. H. G. Baldovi, F. Albarracin, M. Alvaro, B. Ferrer, H. Garcia, ChemPhysChem. 16 (2015) 2094.10.1002/cphc.201402660Suche in Google Scholar PubMed

85. S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, F. Zhang, C. Li, J. Catal. 339 (2016) 77.10.1016/j.jcat.2016.03.024Suche in Google Scholar

86. T. Mavric, M. Valant, M. Forster, A. J. Cowan, U. Lavrencic, S. Emin, J. Colloid Interface Sci. 483 (2016) 93.10.1016/j.jcis.2016.08.019Suche in Google Scholar PubMed

87. J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 130 (2008) 13885.10.1021/ja8034637Suche in Google Scholar PubMed

88. F. Le Formal, E. Pastor, S. D. Tilley, C. A. Mesa, S. R. Pendlebury, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 137 (2015) 6629.10.1021/jacs.5b02576Suche in Google Scholar PubMed PubMed Central

89. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. 103 (2006) 15729.10.1073/pnas.0603395103Suche in Google Scholar PubMed PubMed Central

90. P. Liao, J. A. Keith, E. A. Carter, J. Am. Chem. Soc. 134 (2012) 13296.10.1021/ja301567fSuche in Google Scholar PubMed

91. S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 12 (2013) 842.10.1038/nmat3684Suche in Google Scholar PubMed

92. K. G. Upul Wijayantha, S. Saremi-Yarahmadi, L. M. Peter, Phys. Chem. Chem. Phys. 13 (2011) 5264.10.1039/c0cp02408bSuche in Google Scholar PubMed

93. V. Cristino, S. Marinello, A. Molinari, S. Caramori, S. Carli, R. Boaretto, R. Argazzi, L. Meda, C. A. Bignozzi, J. Mater. Chem. A 0 (2016) 1.Suche in Google Scholar

94. J. Zhang, Y. Nosaka, J. Phys. Chem. C 117 (2013) 1383.10.1021/jp3105166Suche in Google Scholar

95. J. Zhang, Y. Nosaka, J. Phys. Chem. C 118 (2014) 10824.10.1021/jp501214mSuche in Google Scholar

96. M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 133 (2011) 14868.10.1021/ja205325vSuche in Google Scholar PubMed

97. Y. Ma, F. Le Formal, A. Kafizas, S. R. Pendlebury, J. R. Durrant, J. Mater. Chem. A 3 (2015) 20649.10.1039/C5TA05826KSuche in Google Scholar PubMed PubMed Central

98. A. Yamakata, M. Kawaguchi, N. Nishimura, T. Minegishi, J. Kubota, K. Domen, J. Phys. Chem. C 118 (2014) 23897.10.1021/jp508233zSuche in Google Scholar

99. H. Otsuka, K. Kim, A. Kouzu, I. Takimoto, H. Fujimori, Y. Sakata, Chem. Lett. 34 (2005) 822.10.1246/cl.2005.822Suche in Google Scholar

100. A. Mukherji, C.-H. Sun, S. C. Smith, G.-Q. Q. Lu, L.-Z. Wang, J. Phys. Chem. C 115 (2011) 15674.10.1021/jp202783tSuche in Google Scholar

101. T. Kobayashi, Solid State Commun. 33 (1980) 95.10.1016/0038-1098(80)90704-8Suche in Google Scholar

102. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666.10.1126/science.1102896Suche in Google Scholar PubMed

103. S. Gilje, R. B. Kaner, G. G. Wallace, D. A. N. Li, M. B. Mu, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 3 (2008) 101.10.1038/nnano.2007.451Suche in Google Scholar PubMed

104. M. De Miguel, M. Aílvaro, H. García, Langmuir 28 (2012) 2849.10.1021/la204023wSuche in Google Scholar PubMed

105. P. Atienzar, A. Primo, C. Lavorato, R. Molinari, H. García, Langmuir 29 (2013) 6141.10.1021/la400618sSuche in Google Scholar PubMed

106. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, Li, ACS Nano 4 (2010) 380.10.1021/nn901221kSuche in Google Scholar PubMed

Received: 2018-02-01
Accepted: 2018-03-08
Published Online: 2018-06-16
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1137/html
Button zum nach oben scrollen