Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
-
Christoph Haisch
, Barbara N. Nunes , Jenny Schneider , Detlef Bahnemann und Antonio Otavio T. Patrocinio
Abstract
Being part of the development of environmentally clean and safe sustainable technologies photocatalysis is attracting increasing attention. During the last decade, great attention has been paid to the synthesis of different photocatalysts possessing high photocatalytic activity, whereas fundamental studies concerning the underlying photocatalytic processes have rarely been executed. The knowledge of these processes is, however, of utmost importance for the understanding of the reaction mechanism and thus for a better design of photocatalytic systems. The transient absorption spectroscopy (TAS) is one widely used method to study such fundamental processes. The present review paper focuses on the application of TAS in the UV-Vis-IR regions to investigate the charge carrier dynamics in ultrafast and nano-to-millisecond time regime. Hereby, the photo induced processes occurring in different materials will be discussed. Moreover, further attention is also paid to nanocomposite-based systems, in which different materials are used concomitantly to promote more efficient photocatalytic processes.
Acknowledgments
This work was supported by Fundacão de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the german Federal Ministry of Education and Research (BMBF). A.O.T.P. is also thankful to Alexander von Humboldt Foundation for the fellowship in Germany.
References
1. K. W. Guo, Int. J. Energy Res. 36 (2012) 1.10.1002/er.1928Suche in Google Scholar
2. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229.10.1002/adma.201102752Suche in Google Scholar PubMed
3. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603.10.1039/C5CS00838GSuche in Google Scholar PubMed
4. R. G. W. Norrish, G. Porter, Nature 164 (1949) 658.10.1038/164658a0Suche in Google Scholar
5. M. Eigen, Discuss. Faraday Soc. 17 (1954) 194.10.1039/DF9541700194Suche in Google Scholar
6. G. Porter, Proc. R. Soc. A Math. Phys. Eng. Sci. 200 (1950) 284.10.1098/rspa.1950.0018Suche in Google Scholar
7. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.10.1021/cr00033a004Suche in Google Scholar
8. N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, J. Phys. Chem. 99 (1995) 16655.10.1021/j100045a027Suche in Google Scholar
9. D. Bahnemann, A. Henglein, J. Lilie, L. Spanhel, J. Phys. Chem. 88 (1984) 709.10.1021/j150648a018Suche in Google Scholar
10. M. Grätzel, A. J. Frank, J. Phys. Chem. 86 (1982) 2964.10.1021/j100212a031Suche in Google Scholar
11. I. A. Shkrob, M. C. Sauer, J. Phys. Chem. B 108 (2004) 12497.10.1021/jp047736tSuche in Google Scholar
12. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, J. Phys. Chem. B 104 (2000) 538.10.1021/jp991085xSuche in Google Scholar
13. T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108 (2004) 3817.10.1021/jp031305dSuche in Google Scholar
14. T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, Chem. Phys. Lett. 438 (2007) 268.10.1016/j.cplett.2007.03.017Suche in Google Scholar
15. Y. Tamaki, A. Furube, R. Katoh, M. Murai, K. Hara, H. Arakawa, M. Tachiya, Comptes Rendus Chim. 9 (2006) 268.10.1016/j.crci.2005.05.018Suche in Google Scholar
16. Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, A. Furube, J. Phys. Chem. C 113 (2009) 11741.10.1021/jp901833jSuche in Google Scholar
17. C. J. Willsher, J. Photochem. 28 (1985) 229.10.1016/0047-2670(85)87034-9Suche in Google Scholar
18. R. W. Kessler, G. Krabichler, S. Uhl, D. Oelkrug, W. P. Hagan, J. Hyslop, F. Wilkinson, Opt. Acta (Lond). 30 (1983) 1099.10.1080/713821340Suche in Google Scholar
19. A. Yamakata, J. J. M. Vequizo, H. Matsunaga, J. Phys. Chem. C 119 (2015) 24538.10.1021/acs.jpcc.5b09236Suche in Google Scholar
20. A. Kafizas, X. Wang, S. R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I. P. Parkin, J. R. Durrant, J. Phys. Chem. A 120 (2016) 715.10.1021/acs.jpca.5b11567Suche in Google Scholar PubMed
21. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 114 (2014) 9919.10.1021/cr5001892Suche in Google Scholar PubMed
22. X. Yang, N. Tamai, Phys. Chem. Chem. Phys. 3 (2001) 3393.10.1039/b101721gSuche in Google Scholar
23. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Phys. Chem. Chem. Phys. 9 (2007) 1453.10.1039/B617552JSuche in Google Scholar PubMed
24. D. E. Skinner, D. P. Colombo, J. J. Cavaleri, R. M. Bowman, J. Phys. Chem. 99 (1995) 7853.10.1021/j100020a003Suche in Google Scholar
25. J. J. M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, ACS Catal. 7 (2017) 2644.10.1021/acscatal.7b00131Suche in Google Scholar
26. M. Sachs, E. Pastor, A. Kafizas, J. R. Durrant, J. Phys. Chem. Lett. 7 (2016) 3742.10.1021/acs.jpclett.6b01501Suche in Google Scholar PubMed PubMed Central
27. P. V. Kamat, T. W. Ebbesen, N. M. Dimitrijević, A. J. Nozik, Chem. Phys. Lett. 157 (1989) 384.10.1016/0009-2614(89)87267-7Suche in Google Scholar
28. N. Serpone, M. A. Jamieson, J. Ramsden, Phys. Lett. 115 (1985) 473.10.1016/0009-2614(85)85173-3Suche in Google Scholar
29. Y. Nosaka, H. Miyama, M. Terauchi, T. Kobayashi, J. Phys. Chem. 255 (1988) 6521.10.1021/j100313a003Suche in Google Scholar
30. S. D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chemie – Int. Ed. 49 (2010) 6405.10.1002/anie.201003110Suche in Google Scholar PubMed
31. K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem. 4 (2011) 432.10.1002/cssc.201000416Suche in Google Scholar PubMed
32. Z. Huang, Y. Lin, X. Xiang, W. Rodríguez-Córdoba, K. J. McDonald, K. S. Hagen, K.-S. Choi, B. S. Brunschwig, D. G. Musaev, C. L. Hill, Energy Environ. Sci. 5 (2012) 8923.10.1039/c2ee22681bSuche in Google Scholar
33. D. K. Bora, A. Braun, E. C. Constable, Energy Environ. Sci. 6 (2013) 407.10.1039/C2EE23668KSuche in Google Scholar
34. P. Saurabh Bassi, L. Helena Wong, J. Barber, Phys. Chem. Chem. Phys. 16 (2014) 11834.10.1039/c3cp55174aSuche in Google Scholar PubMed
35. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, J. Z. Zhang, J. Phys. Chem. B 102 (1998) 770.10.1021/jp973149eSuche in Google Scholar
36. B. C. Fitzmorris, J. M. Patete, J. Smith, X. Mascorro, S. Adams, S. S. Wong, J. Z. Zhang, ChemSusChem. 6 (2013) 1907.10.1002/cssc.201300571Suche in Google Scholar PubMed
37. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119.10.1021/nl200708ySuche in Google Scholar PubMed
38. T. P. Ruoko, K. Kaunisto, M. Bärtsch, J. Pohjola, A. Hiltunen, M. Niederberger, N. V. Tkachenko, H. Lemmetyinen, J. Phys. Chem. Lett. 6 (2015) 2859.10.1021/acs.jpclett.5b01128Suche in Google Scholar PubMed
39. S. R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S. D. Tilley, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 136 (2014) 9854.10.1021/ja504473eSuche in Google Scholar PubMed PubMed Central
40. H. Zhang, Y. Chen, R. Lu, R. Li, A. Yu, Phys. Chem. Chem. Phys. 18 (2016) 14904.10.1039/C6CP01600FSuche in Google Scholar
41. J. D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chemie – Int. Ed. 55 (2016) 9389.10.1002/anie.201603990Suche in Google Scholar PubMed
42. Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 115 (2011) 4594.10.1021/jp112424zSuche in Google Scholar
43. E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 11 (2011) 1792.10.1021/nl200409xSuche in Google Scholar PubMed
44. E. Conca, M. Aresti, M. Saba, M. F. Casula, F. Quochi, G. Mula, D. Loche, M. R. Kim, L. Manna, A. Corrias, Nanoscale 6 (2014) 2238.10.1039/C3NR05567ASuche in Google Scholar PubMed
45. K. Wu, Q. Li, Y. Jia, J. R. McBride, Z. X. Xie, T. Lian, ACS Nano 9 (2015) 961.10.1021/nn506796mSuche in Google Scholar PubMed
46. W. D. Kim, J. H. Kim, S. Lee, S. Lee, J. Y. Woo, K. Lee, W. S. Chae, S. Jeong, W. K. Bae, J. A. McGuire, Chem. Mater. 28 (2016) 962.10.1021/acs.chemmater.5b04790Suche in Google Scholar
47. W. Li, J. R. Lee, F. Jäckel, ACS Appl. Mater. Interfaces 8 (2016) 29434.10.1021/acsami.6b09364Suche in Google Scholar PubMed
48. P. Rukenstein, A. Teitelboim, M. Volokh, M. Diab, D. Oron, T. Mokari, J. Phys. Chem. C 120 (2016) 15453.10.1021/acs.jpcc.6b04151Suche in Google Scholar
49. I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C 119 (2015) 20792.10.1021/acs.jpcc.5b05128Suche in Google Scholar
50. F. Meng, J. Li, S. K. Cushing, J. Bright, M. Zhi, J. D. Rowley, Z. Hong, A. Manivannan, A. D. Bristow, N. Wu, ACS Catal. 3 (2013) 746.10.1021/cs300740eSuche in Google Scholar
51. J. Huang, Q. Shang, Y. Huang, F. Tang, Q. Zhang, Q. Liu, S. Jiang, F. Hu, W. Liu, Y. Luo, Angew. Chemie – Int. Ed. 55 (2016) 2137.10.1002/anie.201510642Suche in Google Scholar PubMed
52. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, Chem. Phys. 285 (2002) 31.10.1016/S0301-0104(02)00686-9Suche in Google Scholar
53. O. C. Compton, E. C. Carroll, J. Y. Kim, D. S. Larsen, F. E. Osterloh, J. Phys. Chem. C 111 (2007) 14589.10.1021/jp0751155Suche in Google Scholar
54. Y. Zhao, P. Chen, B. Zhang, D. S. Su, S. Zhang, L. Tian, J. Lu, Z. Li, X. Cao, B. Wang, Chem. – A Eur. J. 18 (2012) 11949.10.1002/chem.201201065Suche in Google Scholar PubMed
55. A. M. Peiró, C. Colombo, G. Doyle, J. Nelson, A. Mills, J. R. Durrant, J. Phys. Chem. B 110 (2006) 23255.10.1021/jp064591cSuche in Google Scholar PubMed
56. A. Yamakata, T. Ishibashi, K. Takeshita, H. Onishi, Top. Catal. 35 (2005) 211.10.1007/s11244-005-3826-0Suche in Google Scholar
57. P. Salvador, J. Phys. Chem. C 111 (2007) 17038.10.1021/jp074451iSuche in Google Scholar
58. A. Imanishi, K. T. Okamura, N. Ohashi, R. Nakamura, Y. Nakato, J. Amer. Chem. Soc. 129 (2007) 11569.10.1021/ja073206+Suche in Google Scholar PubMed
59. D. W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. B 101 (1997) 4265.10.1021/jp9639915Suche in Google Scholar
60. A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (2010) 4208.10.1021/jp909993wSuche in Google Scholar
61. R. T. Williams, K. B. Ucer, G. Xiong, H. M. Yochum, L. G. Grigorjeva, D. K. Millers, G. Corradi, Radiat. Eff. Defects Solids 155 (2001) 265.10.1080/10420150108214125Suche in Google Scholar
62. S. H. Szczepankiewicz, J. A. Moss, M. R. Hoffmann, J. Phys. Chem. B 106 (2002) 2922.10.1021/jp004244hSuche in Google Scholar
63. A. J. Cowan, W. Leng, P. R. F. Barnes, D. R. Klug, J. R. Durrant, Phys. Chem. Chem. Phys. 15 (2013) 8772.10.1039/c3cp50318fSuche in Google Scholar PubMed
64. N. C. Arbour, D. K. Sharma, C. H. Langford, J. Phys. Chem. 94 (1990) 331.10.1021/j100364a056Suche in Google Scholar
65. R. Katoh, A. Furube, K. I. Yamanaka, T. Morikawa, J. Phys. Chem. Lett. 1 (2010) 3261.10.1021/jz1011548Suche in Google Scholar
66. J. Tang, A. J. Cowan, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 115 (2011) 3143.10.1021/jp1080093Suche in Google Scholar
67. L. Jing, J. Zhou, J. R. Durrant, J. Tang, D. Liu, H. Fu, Energy Environ. Sci. 5 (2012) 6552.10.1039/c2ee03383fSuche in Google Scholar
68. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, T. Majima, J. Phys. Chem. B 108 (2004) 19299.10.1021/jp0470593Suche in Google Scholar
69. Y. Murakami, J. Nishino, T. Mesaki, Y. Nosaka, Lett. 44 (2011) 88.10.1080/00387011003699683Suche in Google Scholar
70. D. Lawless, N. Serpone, D. Meisel, J. Phys. Chem. 95 (1991) 5166.10.1021/j100166a047Suche in Google Scholar
71. Z. Zhang, J. T. Yates, Chem. Rev. 112 (2012) 5520.10.1021/cr3000626Suche in Google Scholar PubMed
72. X. Wang, A. Kafizas, X. Li, S. J. A. Moniz, P. J. T. Reardon, J. Tang, I. P. Parkin, J. R. Durrant, J. Phys. Chem. C 119 (2015) 10439.10.1021/acs.jpcc.5b01858Suche in Google Scholar
73. A. O. T. Patrocinio, J. Schneider, M. D. França, L. M. Santos, B. P. Caixeta, A. E. H. Machado, D. W. Bahnemann, RSC Adv. 5 (2015) 70536.10.1039/C5RA13291FSuche in Google Scholar
74. L. Jing, Y. Cao, H. Cui, J. R. Durrant, J. Tang, D. Liu, H. Fu, Chem. Commun. 48 (2012) 10775.10.1039/c2cc34973fSuche in Google Scholar PubMed
75. Y. Cao, L. Jing, X. Shi, Y. Luan, J. R. Durrant, J. Tang, H. Fu, Phys. Chem. Chem. Phys. 14 (2012) 8530.10.1039/c2cp41167aSuche in Google Scholar PubMed
76. S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. Klug, J. R. Durrant, Chem. Commun. (Camb). 47 (2011) 716.10.1039/C0CC03627GSuche in Google Scholar
77. M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, Pnas 109 (2012) 15640.10.1073/pnas.1118326109Suche in Google Scholar PubMed PubMed Central
78. I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 97 (1993) 11064.10.1021/j100144a027Suche in Google Scholar
79. S. Hotchandani, I. Bedja, R. Fessenden, P. Kamat, Langmuir 10 (1994) 17.10.1021/la00013a600Suche in Google Scholar
80. F. M. Pesci, A. J. Cowan, B. D. Alexander, J. R. Durrant, D. R. Klug, J. Phys. Chem. Lett. 2 (2011) 1900.10.1021/jz200839nSuche in Google Scholar
81. N. Aiga, Q. Jia, K. Watanabe, A. Kudo, T. Sugimoto, Y. Matsumoto, J. Phys. Chem. C 117 (2013) 9881.10.1021/jp4013027Suche in Google Scholar
82. Y. Ma, S. R. Pendlebury, A. Reynal, F. le Formal, J. R. Durrant, Chem. Sci. 5 (2014) 2964.10.1039/C4SC00469HSuche in Google Scholar
83. J. Schneider, K. Nikitin, M. Wark, D. W. Bahnemann, R. Marschall, Phys. Chem. Chem. Phys. 18 (2016) 10719.10.1039/C5CP07115ASuche in Google Scholar PubMed
84. H. G. Baldovi, F. Albarracin, M. Alvaro, B. Ferrer, H. Garcia, ChemPhysChem. 16 (2015) 2094.10.1002/cphc.201402660Suche in Google Scholar PubMed
85. S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, F. Zhang, C. Li, J. Catal. 339 (2016) 77.10.1016/j.jcat.2016.03.024Suche in Google Scholar
86. T. Mavric, M. Valant, M. Forster, A. J. Cowan, U. Lavrencic, S. Emin, J. Colloid Interface Sci. 483 (2016) 93.10.1016/j.jcis.2016.08.019Suche in Google Scholar PubMed
87. J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 130 (2008) 13885.10.1021/ja8034637Suche in Google Scholar PubMed
88. F. Le Formal, E. Pastor, S. D. Tilley, C. A. Mesa, S. R. Pendlebury, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 137 (2015) 6629.10.1021/jacs.5b02576Suche in Google Scholar PubMed PubMed Central
89. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. 103 (2006) 15729.10.1073/pnas.0603395103Suche in Google Scholar PubMed PubMed Central
90. P. Liao, J. A. Keith, E. A. Carter, J. Am. Chem. Soc. 134 (2012) 13296.10.1021/ja301567fSuche in Google Scholar PubMed
91. S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 12 (2013) 842.10.1038/nmat3684Suche in Google Scholar PubMed
92. K. G. Upul Wijayantha, S. Saremi-Yarahmadi, L. M. Peter, Phys. Chem. Chem. Phys. 13 (2011) 5264.10.1039/c0cp02408bSuche in Google Scholar PubMed
93. V. Cristino, S. Marinello, A. Molinari, S. Caramori, S. Carli, R. Boaretto, R. Argazzi, L. Meda, C. A. Bignozzi, J. Mater. Chem. A 0 (2016) 1.Suche in Google Scholar
94. J. Zhang, Y. Nosaka, J. Phys. Chem. C 117 (2013) 1383.10.1021/jp3105166Suche in Google Scholar
95. J. Zhang, Y. Nosaka, J. Phys. Chem. C 118 (2014) 10824.10.1021/jp501214mSuche in Google Scholar
96. M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 133 (2011) 14868.10.1021/ja205325vSuche in Google Scholar PubMed
97. Y. Ma, F. Le Formal, A. Kafizas, S. R. Pendlebury, J. R. Durrant, J. Mater. Chem. A 3 (2015) 20649.10.1039/C5TA05826KSuche in Google Scholar PubMed PubMed Central
98. A. Yamakata, M. Kawaguchi, N. Nishimura, T. Minegishi, J. Kubota, K. Domen, J. Phys. Chem. C 118 (2014) 23897.10.1021/jp508233zSuche in Google Scholar
99. H. Otsuka, K. Kim, A. Kouzu, I. Takimoto, H. Fujimori, Y. Sakata, Chem. Lett. 34 (2005) 822.10.1246/cl.2005.822Suche in Google Scholar
100. A. Mukherji, C.-H. Sun, S. C. Smith, G.-Q. Q. Lu, L.-Z. Wang, J. Phys. Chem. C 115 (2011) 15674.10.1021/jp202783tSuche in Google Scholar
101. T. Kobayashi, Solid State Commun. 33 (1980) 95.10.1016/0038-1098(80)90704-8Suche in Google Scholar
102. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666.10.1126/science.1102896Suche in Google Scholar PubMed
103. S. Gilje, R. B. Kaner, G. G. Wallace, D. A. N. Li, M. B. Mu, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 3 (2008) 101.10.1038/nnano.2007.451Suche in Google Scholar PubMed
104. M. De Miguel, M. Aílvaro, H. García, Langmuir 28 (2012) 2849.10.1021/la204023wSuche in Google Scholar PubMed
105. P. Atienzar, A. Primo, C. Lavorato, R. Molinari, H. García, Langmuir 29 (2013) 6141.10.1021/la400618sSuche in Google Scholar PubMed
106. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, Li, ACS Nano 4 (2010) 380.10.1021/nn901221kSuche in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Alexander Eychmüller
- Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
- Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
- Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
- Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
- TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
- Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
- Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
- Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
- Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
- Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
- Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
- Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
- Towards Low-Toxic Colloidal Quantum Dots
- Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
- Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
- Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
- Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
- Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
- Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
- n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
- The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
- Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
- Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
- Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
- Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
- Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
- Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
- Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
- Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
- Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
- Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
- Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
- Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Alexander Eychmüller
- Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
- Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
- Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
- Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
- TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
- Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
- Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
- Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
- Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
- Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
- Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
- Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
- Towards Low-Toxic Colloidal Quantum Dots
- Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
- Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
- Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
- Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
- Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
- Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
- n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
- The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
- Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
- Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
- Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
- Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
- Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
- Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
- Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
- Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
- Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
- Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
- Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
- Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System