Startseite Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration

  • Tobias Beirau EMAIL logo , Claudia E. Reissner , Herbert Pöllmann und Ulrich Bismayer
Veröffentlicht/Copyright: 14. Juni 2022

Abstract

The comparison of the evolution of the mechanical properties (elastic modulus and hardness) after step-wise thermal annealing for 1 and 16 h up to 900 K of a radiation-damaged pyrochlore (∼35% amorphous fraction; 1.8 wt% ThO2) provides insights to the time-temperature dependence of the recrystallization behavior. Especially the elastic modulus, directly related to interatomic bonding, enables the correlation with the amount of amorphous fraction. From this a pronounced effect of the annealing time on percolation behavior could be deduced. Evolved gas analysis indicate dehydration in the course of the structural reorganization process.


Corresponding author: Tobias Beirau, Institute of Geosciences and Geography, Mineralogy/Geochemistry, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany, E-mail:
Deceased: Herbert Pöllmann

Award Identifier / Grant number: BE 5456/2-1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – No. BE 5456/2-1 (T.B.).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chakoumakos, B. C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 1984, 53, 120–129. https://doi.org/10.1016/0022-4596(84)90234-2.Suche in Google Scholar

2. Lumpkin, G. R., Ewing, R. C. Alpha-decay damage in minerals of the pyrochlore group. Phys. Chem. Miner. 1988, 16, 2–20. https://doi.org/10.1007/bf00201325.Suche in Google Scholar

3. Atencio, D., Gieré, R., Andrade, M. B., Christy, A. G., Kartashov, P. M. The pyrochlore supergroup of minerals: nomenclature. Can. Mineral. 2010, 48, 673–698. https://doi.org/10.3749/canmin.48.3.673.Suche in Google Scholar

4. Lumpkin, G. R. Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J. Nucl. Mater. 2001, 289, 136–166. https://doi.org/10.1016/s0022-3115(00)00693-0.Suche in Google Scholar

5. Ewing, R. C., Chakoumakos, B. C., Lumpkin, G. R., Murakami, T., Greegor, R. B., Lytle, F. W. Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear waste forms. Nucl. Instrum. Methods B 1988, 32, 487–497. https://doi.org/10.1016/0168-583x(88)90259-5.Suche in Google Scholar

6. Ewing, R. C., Weber, W. J., Clinard Jr, F. W. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. https://doi.org/10.1016/0149-1970(94)00016-y.Suche in Google Scholar

7. Ewing, R. C. Displaced by radiation. Nature 2007, 445, 161–162. https://doi.org/10.1038/445161a.Suche in Google Scholar PubMed

8. Salje, E. K. H., Chrosch, J., Ewing, R. C. Is “metamictization” of zircon a phase transition? Am. Mineral. 1999, 84, 1107–1116. https://doi.org/10.2138/am-1999-7-813.Suche in Google Scholar

9. Beirau, T., Huber, N. Percolation transitions in pyrochlore: radiation-damage and thermally induced structural reorganization. Appl. Phys. Lett. 2021, 119, 131905. https://doi.org/10.1063/5.0068685.Suche in Google Scholar

10. Soyarslan, C., Bargmann, S., Pradas, M., Weissmüller, J. 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater. 2018, 149, 326–340. https://doi.org/10.1016/j.actamat.2018.01.005.Suche in Google Scholar

11. Huber, N., Beirau, T. Modelling the effect of intrinsic radiation damage on mechanical properties: the crystalline-to-amorphous transition in zircon. Scripta Mater. 2021, 197, 113789. https://doi.org/10.1016/j.scriptamat.2021.113789.Suche in Google Scholar

12. Zietlow, P., Beirau, T., Mihailova, B., Groat, L. A., Chudy, T., Shelyug, A., Navrotsky, A., Ewing, R. C., Schlüter, J., Skoda, R., Bismayer, U. Thermal annealing of natural, radiation-damaged pyrochlore. Z. Kristallogr. 2017, 232, 25–38. https://doi.org/10.1515/zkri-2016-1965.Suche in Google Scholar

13. Reissner, C. E., Roddatis, V., Bismayer, U., Schreiber, A., Pöllmann, H., Beirau, T. Mechanical and structural response of radiation-damaged pyrochlore to thermal annealing. Materialia 2020, 14, 100950. https://doi.org/10.1016/j.mtla.2020.100950.Suche in Google Scholar

14. Li, X., Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Char. 2002, 48, 11–36. https://doi.org/10.1016/s1044-5803(02)00192-4.Suche in Google Scholar

15. Oliver, W. C., Pharr, G. M. Measurement of hardness and elastic modulus by instrument indentation: advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. https://doi.org/10.1557/jmr.2004.19.1.3.Suche in Google Scholar

16. Oliver, W. C., Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. https://doi.org/10.1557/jmr.1992.1564.Suche in Google Scholar

17. Joslin, D. L., Oliver, W. C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 1990, 5, 123–126. https://doi.org/10.1557/jmr.1990.0123.Suche in Google Scholar

18. Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. https://doi.org/10.1016/0020-7225(65)90019-4.Suche in Google Scholar

19. Zhang, M., Salje, E. K. H., Malcherek, T., Bismayer, U., Groat, L. A. Dehydration OF metamict titanite: an infrared spectroscopic study. Can. Mineral. 2000, 38, 119–130. https://doi.org/10.2113/gscanmin.38.1.119.Suche in Google Scholar

20. Reissner, C. E., Bismayer, U., Kern, D., Reissner, M., Park, S., Zhang, J., Ewing, R. C., Shelyug, A., Navrotsky, A., Paulmann, C., Škoda, R., Groat, L. A., Pöllmann, H., Beirau, T. Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. Phys. Chem. Miner. 2019, 46, 921–933. https://doi.org/10.1007/s00269-019-01051-z.Suche in Google Scholar

21. Salje, E. K. H., Zhang, M. Hydrous species in ceramics for the encapsulation of nuclear waste: OH in zircon. J. Phys.: Condens. Matter 2006, 18, L277–L281. https://doi.org/10.1088/0953-8984/18/22/l01.Suche in Google Scholar

22. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 2010, 11, 940–950. https://doi.org/10.1002/cphc.200900943.Suche in Google Scholar PubMed

Received: 2022-01-28
Accepted: 2022-05-23
Published Online: 2022-06-14
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0006/html
Button zum nach oben scrollen