Abstract
The GdNi2Ga3In type crystal structures (Pnma) of the quaternary intermetallic compounds TbNi2Ga3.03(1)In0.97(1) (a = 2.41554(2), b = 0.41614(4), c = 0.92220(10) nm, wR2 = 0.0512, 2006 F2 values, 90 parameters) and HoNi2Ga3.03(2)In0.97(2) (a = 2.41822(7), b = 0.41400(15), c = 0.9199(3) nm, wR2 = 0.0588, 1980 F2 values, 89 parameters) were refined from the single crystal X-ray diffraction data. Single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The compounds with RE = Y, Dy and Ho are isotypic and were characterized by powder X-ray diffraction. The magnetic behaviour of the compounds RENi2Ga3In (RE = Y, Dy, Ho) was characterized by means of magnetization and dc magnetic susceptibility measurements, carried out in the temperature range 1.72–400 K in external magnetic fields up to 5 T. YNi2Ga3In was found to be a Pauli paramagnet with a molar magnetic susceptibility of about 4⋅10−5 emu mol−1 at room temperature. DyNi2Ga3In and HoNi2Ga3In are Curie-Weiss paramagnets which order antiferromagnetically below TN = 10.5 K (DyNi2Ga3In) and 4.4 K (HoNi2Ga3In).
Acknowledgments
We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections. The research stay of MH in Münster was supported by the DAAD foundation.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Bünzli, J.-C., Pecharsky, V. K., Eds., Elsevier: Amsterdam, Vol. 34, 2005; pp. 1–133; https://doi.org/10.1016/S0168-1273(04)34001-8.Search in Google Scholar
2. Krypyakevych, P. I. Structure Types of the Intermetallic Compounds; Nauka: Moscow, 1977.Search in Google Scholar
3. Yarmolyuk, Y. P., Grin´, Y. M., Gladyshevskii, Y. I. Dopov. AN UkrSSR, Ser. А. 1979, 9, 771–775.Search in Google Scholar
4. Grin, Y. N., Gladyshevsky, R. E. Gallides, Metallurgia; Moscow, 1989; p. 303.Search in Google Scholar
5. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar
6. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar
7. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606.10.1016/j.jallcom.2014.08.079Search in Google Scholar
8. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
9. Horiacha, M., Savchuk, I., Nychyporuk, G., Serkiz, R., Zaremba, V. Visn. Lviv. Derzh. Univ., Ser. Khim. 2018, 59, 67–75.10.30970/vch.5901.067Search in Google Scholar
10. Horiacha, M., Zinko, L., Nychyporuk, G., Serkiz, R., Zaremba, V. Visn. Lviv. Derzh. Univ., Ser. Khim. 2017, 58, 77–85.Search in Google Scholar
11. Horiacha, M., Nychyporuk, G., Pöttgen, R., Zaremba, V. Z. Naturforsch. 2022, 77b, 111–116.10.1515/znb-2021-0167Search in Google Scholar
12. Chondroudi, M., Balasubramanian, M., Welp, U., Kwok, W.-K., Kanatzidis, M. G. Chem. Mater. 2007, 19, 4769.10.1021/cm071687qSearch in Google Scholar
13. Chumalo, N., Nychyporuk, G. P., Pavlyuk, V. V., Pöttgen, R., Kaczorowski, D., Zaremba, V. I. J. Solid State Chem. 2010, 183, 2963.10.1016/j.jssc.2010.10.005Search in Google Scholar
14. Chondroudi, M., Peter, S. C., Malliakas, C. D., Balasubramanian, M., Li, Q., Kanatzidis, M. G. Inorg. Chem. 2011, 50, 1184.10.1021/ic100975xSearch in Google Scholar PubMed
15. Oliynyk, A. O., Stoyko, S. S. Mar A. Inorg. Chem. 2013, 52, 8264.10.1021/ic401171vSearch in Google Scholar PubMed
16. Galadzhun, Y. V., Horiacha, M. M., Nychyporuk, G. P., Rodewald, U. C., Pöttgen, R., Zaremba, V. I. Z. Anorg. Allg. Chem. 2016, 642, 896–901.10.1002/zaac.201600228Search in Google Scholar
17. Horiacha, M., Zaremba, V., Stegemann, F., Pöttgen, R. Monatsh. Chem. 2019, 150, 1409–1415.10.1007/s00706-019-02464-wSearch in Google Scholar
18. Horiacha, M., Reimann, M. K., Kösters, J., Zaremba, V. I., Pöttgen, R. Z. Kristallogr. 2020, 235, 117–125.10.1515/zkri-2020-0012Search in Google Scholar
19. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Search in Google Scholar
20. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S2052519212051366Search in Google Scholar
21. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790.10.1107/S0021889807029238Search in Google Scholar
22. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana 2006: general features. Z. Kristallogr. 2014, 229, 345-352.10.1515/zkri-2014-1737Search in Google Scholar
23. Donohue, J. The Structures of the Elements; Wiley: New York (U.S.A.), 1974.Search in Google Scholar
24. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0024).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers