Home Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
Article
Licensed
Unlicensed Requires Authentication

Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure

  • Nataliya L. Gulay , Guido Kreiner , Yaroslav M. Kalychak and Rainer Pöttgen EMAIL logo
Published/Copyright: July 7, 2022

Abstract

The lutetium-rich intermetallic compound Lu37Ru16.4In4 was synthesized by induction melting of the elements in a sealed tantalum ampoule and subsequent annealing. The Lu37Ru16.4In4 structure was refined from single crystal X-ray diffractometer data: new type, I a 3 d , a = 2756.21(11) pm, wR2 = 0.0579, 3056 F2 values and 92 variables. The superstructure formation of Lu37Ru16.4In4 is discussed on the basis of a group–subgroup scheme starting from the bcc structure as the aristotype.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

3. Heusler, F., Starck, W., Haupt, E. Verh. Dtsch. Phys. Ges. 1903, 5, 219–232.Search in Google Scholar

4. Heusler, O. Ann. Phys. 1934, 19, 155–201; https://doi.org/10.1002/andp.19344110205.Search in Google Scholar

5. Felser, C., Hirohata, A., Eds. Heusler Alloys – Properties, Growth, Applications; Springer: Cham, 2016.10.1007/978-3-319-21449-8Search in Google Scholar

6. Elphick, K., Frost, W., Samiepour, M., Kubota, T., Takanashi, K., Sukegawa, H., Mitani, S., Hirohata, A. Sci. Technol. Adv. Mater. 2021, 22, 235–271.10.1080/14686996.2020.1812364Search in Google Scholar PubMed PubMed Central

7. Müller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley: Chichester, 2007.10.1002/9780470057278Search in Google Scholar

8. Sluiter, M. H. F. Phase Trans. 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Search in Google Scholar

9. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar

10. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262; https://doi.org/10.1515/znb-2021-0022.Search in Google Scholar

11. von Heidenstam, O., Johansson, A., Westman, S. Acta Chem. Scand. 1968, 22, 653–661.10.3891/acta.chem.scand.22-0653Search in Google Scholar

12. Morral, F. R., Westgren, A. Sven. Kem. Tidskr. 1934, 46, 153–156.Search in Google Scholar

13. Zalkin, A., Ramsey, W. J. J. Phys. Chem. 1958, 62, 689–693; https://doi.org/10.1021/j150564a013.Search in Google Scholar

14. Lux, R., Kuntze, V., Hillebrecht, H. Solid State Sci. 2012, 14, 1445–1453; https://doi.org/10.1016/j.solidstatesciences.2012.07.028.Search in Google Scholar

15. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2022, 77b, 347–352.10.1515/znb-2021-0166Search in Google Scholar

16. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648; https://doi.org/10.1002/zaac.202100314.Search in Google Scholar

17. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648; https://doi.org/10.1002/zaac.202100356.Search in Google Scholar

18. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

19. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

20. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

21. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

22. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

23. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

24. Demchyna, M., Belan, B., Manyako, M., Akselrud, L., Gagor, A., Dzevenko, M., Kalychak, Y. Intermetallics 2013, 37, 22–26; https://doi.org/10.1016/j.intermet.2013.01.010.Search in Google Scholar

25. Bigun, I., Svitlyk, V., Kalychak, Y. Int. Conf. Crystal Chem. Intermetallic Compds., 11th, Lviv, Ukraine, 2010; p. 140.Search in Google Scholar

26. Bigun, I., Demchyna, M. Y., Dzevenko, M. D., Belan, B. D., Manyako, M. B., Tyvanchuk, Y. B., Kalychak, Y. M. Visn. Lviv. Derzh. Univ. Ser. Khim. 2013, 54, 3–10.Search in Google Scholar

27. Dzevenko, M. V., Zaremba, R. I., Hlukhyy, V. H., Rodewald, U. C., Pöttgen, R., Kalychak, Y. M. Z. Anorg. Allg. Chem. 2007, 633, 724–728; https://doi.org/10.1002/zaac.200600328.Search in Google Scholar

28. Weitzer, F., Leithe-Jasper, A., Rogl, P., Hiebl, K., Noël, H., Wiesinger, G., Steiner, W. J. Solid State Chem. 1993, 104, 368–376; https://doi.org/10.1006/jssc.1993.1172.Search in Google Scholar

29. Heying, B., Niehaus, O., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2016, 71b, 1261–1267; https://doi.org/10.1515/znb-2016-0167.Search in Google Scholar

30. Tappe, F., Schwickert, C., Linsinger, S., Pöttgen, R. Monatsh. Chem. 2011, 142, 1087–1095; https://doi.org/10.1007/s00706-011-0622-3.Search in Google Scholar

31. Shablinskaya, K., Murashova, E., Tursina, A., Kurenbaeva, Z., Yaroslavtsev, A., Seropegin, Y. Intermetallics 2012, 23, 106–110; https://doi.org/10.1016/j.intermet.2011.12.024.Search in Google Scholar

32. Tursina, A. I., Cherviakov, S. G., Noël, H., Chernyshev, V. V., Seropegin, Y. D. Acta Crystallogr. 2010, E66, i40; https://doi.org/10.1107/s1600536810014509.Search in Google Scholar PubMed PubMed Central

33. Tursina, A., Chernyshev, V., Nesterenko, S., Noël, H., Pasturel, M. J. Alloys Compd. 2019, 791, 641–647; https://doi.org/10.1016/j.jallcom.2019.03.224.Search in Google Scholar

34. Kurenbaeva, Z., Murashova, E., Nesterenko, S., Tursina, A., Gribanova, V., Seropegin, Y. D., Noël, H. Int. Conf. Crystal Chem. Intermetallic Compds., 12th, Lviv, Ukraine, 2013; p. 105.Search in Google Scholar

35. Kurenbaeva, Z. M., Tursina, A. I., Murashova, E. V., Nesterenko, S. N., Seropegin, Y. D. Russ. J. Inorg. Chem. 2011, 56, 218–222; https://doi.org/10.1134/s003602361102015x.Search in Google Scholar

36. Kurenbaeva, Z. M., Tursina, A. I., Murashova, E. V., Nesterenko, S. N., Gribanov, A. V., Seropegin, Y. D., Noël, H. J. Alloys Compd. 2007, 442, 86–88; https://doi.org/10.1016/j.jallcom.2006.09.145.Search in Google Scholar

37. Gribanova, V., Murashova, E., Gnida, D., Kurenbaeva, Z., Nesterenko, S., Tursina, A., Kaczorowski, D., Gribanov, A. J. Alloys Compd. 2017, 711, 455–461; https://doi.org/10.1016/j.jallcom.2017.03.168.Search in Google Scholar

38. Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Noël, H., Roisnel, T., Seropegin, Y. D. J. Alloys Compd. 2007, 442, 100–103; https://doi.org/10.1016/j.jallcom.2006.09.146.Search in Google Scholar

39. Murashova, E. V., Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Seropegin, Y. D. J. Alloys Compd. 2008, 454, 206–209; https://doi.org/10.1016/j.jallcom.2006.12.123.Search in Google Scholar

40. Murashova, E. V., Kurenbaeva, Z. M., Tursina, A. I., Noël, H., Rogl, P., Grytsiv, A. V., Gribanov, A. V., Giester, G., Seropegin, Y. D. J. Alloys Compd. 2007, 442, 89–92; https://doi.org/10.1016/j.jallcom.2006.08.346.Search in Google Scholar

41. Chabot, B., Cenzual, K., Parthé, E. Acta Crystallogr. 1981, A37, 6–11; https://doi.org/10.1107/s0567739481000028.Search in Google Scholar

42. Kreiner, G., Franzen, H. F. J. Alloys Compd. 1995, 221, 15–36; https://doi.org/10.1016/0925-8388(94)01374-8.Search in Google Scholar

43. Bodak, O., Demchenko, P., Seropegin, Y., Fedorchuk, A. Z. Kristallogr. 2006, 221, 482–492; https://doi.org/10.1524/zkri.2006.221.5-7.482.Search in Google Scholar

44. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Search in Google Scholar

45. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar

46. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

47. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar

48. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations Between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.Search in Google Scholar

49. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

50. Dwight, A. E., Kimball, C. W. J. Less -Common Met. 1987, 127, 179–182; https://doi.org/10.1016/0022-5088(87)90376-6.Search in Google Scholar

51. Superstructure – Online Dictionary of Crystallography (iucr.org).Search in Google Scholar

52. Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New York, 1977.Search in Google Scholar

53. O’Keefe, M., Hyde, B. G. Crystal Structure I. Patterns and Symmetry; Mineral Society of America: Washington DC, 1996.Search in Google Scholar

54. Eifert, B., Crystallica, H. C. A Package to Plot Crystal Structures; Institute for Theoretical Physics, JLU Giessen: Germany, 2016.Search in Google Scholar

55. Wolfram Research, Inc. Mathematica, Version 13.0.0: Champaign, IL, 2021.Search in Google Scholar

56. Brunner, G. O., Schwarzenbach, D. Z. Kristallogr. 1971, 133, 127–133; https://doi.org/10.1524/zkri.1971.133.133.127.Search in Google Scholar

57. Putz, H., Brandenburg, K. Diamond: Crystal and Molecular Structure Visualization (release 4.6.7); Crystal Impact GbR: Bonn, Germany, 2022.Search in Google Scholar

58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

59. Iandelli, A., Palenzona, A. Rev. Chim. Miner. 1976, 13, 55–61.Search in Google Scholar

60. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182–185; https://doi.org/10.1016/s0925-8388(96)02402-4.Search in Google Scholar

61. Galadzhun, Y. V., Hoffmann, R.-D., Heletta, L., Horiacha, M., Pöttgen, R. Z. Anorg. Allg. Chem. 2018, 644, 1513–1518; https://doi.org/10.1002/zaac.201800188.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0031).


Received: 2022-04-26
Accepted: 2022-06-01
Published Online: 2022-07-07
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0031/html
Scroll to top button