Abstract
The lutetium-rich intermetallic compound Lu37Ru16.4In4 was synthesized by induction melting of the elements in a sealed tantalum ampoule and subsequent annealing. The Lu37Ru16.4In4 structure was refined from single crystal X-ray diffractometer data: new type,
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar
3. Heusler, F., Starck, W., Haupt, E. Verh. Dtsch. Phys. Ges. 1903, 5, 219–232.Search in Google Scholar
4. Heusler, O. Ann. Phys. 1934, 19, 155–201; https://doi.org/10.1002/andp.19344110205.Search in Google Scholar
5. Felser, C., Hirohata, A., Eds. Heusler Alloys – Properties, Growth, Applications; Springer: Cham, 2016.10.1007/978-3-319-21449-8Search in Google Scholar
6. Elphick, K., Frost, W., Samiepour, M., Kubota, T., Takanashi, K., Sukegawa, H., Mitani, S., Hirohata, A. Sci. Technol. Adv. Mater. 2021, 22, 235–271.10.1080/14686996.2020.1812364Search in Google Scholar PubMed PubMed Central
7. Müller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley: Chichester, 2007.10.1002/9780470057278Search in Google Scholar
8. Sluiter, M. H. F. Phase Trans. 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Search in Google Scholar
9. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar
10. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 249–262; https://doi.org/10.1515/znb-2021-0022.Search in Google Scholar
11. von Heidenstam, O., Johansson, A., Westman, S. Acta Chem. Scand. 1968, 22, 653–661.10.3891/acta.chem.scand.22-0653Search in Google Scholar
12. Morral, F. R., Westgren, A. Sven. Kem. Tidskr. 1934, 46, 153–156.Search in Google Scholar
13. Zalkin, A., Ramsey, W. J. J. Phys. Chem. 1958, 62, 689–693; https://doi.org/10.1021/j150564a013.Search in Google Scholar
14. Lux, R., Kuntze, V., Hillebrecht, H. Solid State Sci. 2012, 14, 1445–1453; https://doi.org/10.1016/j.solidstatesciences.2012.07.028.Search in Google Scholar
15. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2022, 77b, 347–352.10.1515/znb-2021-0166Search in Google Scholar
16. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648; https://doi.org/10.1002/zaac.202100314.Search in Google Scholar
17. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648; https://doi.org/10.1002/zaac.202100356.Search in Google Scholar
18. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
19. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
20. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
21. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s2052519212051366.Search in Google Scholar
22. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
23. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
24. Demchyna, M., Belan, B., Manyako, M., Akselrud, L., Gagor, A., Dzevenko, M., Kalychak, Y. Intermetallics 2013, 37, 22–26; https://doi.org/10.1016/j.intermet.2013.01.010.Search in Google Scholar
25. Bigun, I., Svitlyk, V., Kalychak, Y. Int. Conf. Crystal Chem. Intermetallic Compds., 11th, Lviv, Ukraine, 2010; p. 140.Search in Google Scholar
26. Bigun, I., Demchyna, M. Y., Dzevenko, M. D., Belan, B. D., Manyako, M. B., Tyvanchuk, Y. B., Kalychak, Y. M. Visn. Lviv. Derzh. Univ. Ser. Khim. 2013, 54, 3–10.Search in Google Scholar
27. Dzevenko, M. V., Zaremba, R. I., Hlukhyy, V. H., Rodewald, U. C., Pöttgen, R., Kalychak, Y. M. Z. Anorg. Allg. Chem. 2007, 633, 724–728; https://doi.org/10.1002/zaac.200600328.Search in Google Scholar
28. Weitzer, F., Leithe-Jasper, A., Rogl, P., Hiebl, K., Noël, H., Wiesinger, G., Steiner, W. J. Solid State Chem. 1993, 104, 368–376; https://doi.org/10.1006/jssc.1993.1172.Search in Google Scholar
29. Heying, B., Niehaus, O., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2016, 71b, 1261–1267; https://doi.org/10.1515/znb-2016-0167.Search in Google Scholar
30. Tappe, F., Schwickert, C., Linsinger, S., Pöttgen, R. Monatsh. Chem. 2011, 142, 1087–1095; https://doi.org/10.1007/s00706-011-0622-3.Search in Google Scholar
31. Shablinskaya, K., Murashova, E., Tursina, A., Kurenbaeva, Z., Yaroslavtsev, A., Seropegin, Y. Intermetallics 2012, 23, 106–110; https://doi.org/10.1016/j.intermet.2011.12.024.Search in Google Scholar
32. Tursina, A. I., Cherviakov, S. G., Noël, H., Chernyshev, V. V., Seropegin, Y. D. Acta Crystallogr. 2010, E66, i40; https://doi.org/10.1107/s1600536810014509.Search in Google Scholar PubMed PubMed Central
33. Tursina, A., Chernyshev, V., Nesterenko, S., Noël, H., Pasturel, M. J. Alloys Compd. 2019, 791, 641–647; https://doi.org/10.1016/j.jallcom.2019.03.224.Search in Google Scholar
34. Kurenbaeva, Z., Murashova, E., Nesterenko, S., Tursina, A., Gribanova, V., Seropegin, Y. D., Noël, H. Int. Conf. Crystal Chem. Intermetallic Compds., 12th, Lviv, Ukraine, 2013; p. 105.Search in Google Scholar
35. Kurenbaeva, Z. M., Tursina, A. I., Murashova, E. V., Nesterenko, S. N., Seropegin, Y. D. Russ. J. Inorg. Chem. 2011, 56, 218–222; https://doi.org/10.1134/s003602361102015x.Search in Google Scholar
36. Kurenbaeva, Z. M., Tursina, A. I., Murashova, E. V., Nesterenko, S. N., Gribanov, A. V., Seropegin, Y. D., Noël, H. J. Alloys Compd. 2007, 442, 86–88; https://doi.org/10.1016/j.jallcom.2006.09.145.Search in Google Scholar
37. Gribanova, V., Murashova, E., Gnida, D., Kurenbaeva, Z., Nesterenko, S., Tursina, A., Kaczorowski, D., Gribanov, A. J. Alloys Compd. 2017, 711, 455–461; https://doi.org/10.1016/j.jallcom.2017.03.168.Search in Google Scholar
38. Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Noël, H., Roisnel, T., Seropegin, Y. D. J. Alloys Compd. 2007, 442, 100–103; https://doi.org/10.1016/j.jallcom.2006.09.146.Search in Google Scholar
39. Murashova, E. V., Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Seropegin, Y. D. J. Alloys Compd. 2008, 454, 206–209; https://doi.org/10.1016/j.jallcom.2006.12.123.Search in Google Scholar
40. Murashova, E. V., Kurenbaeva, Z. M., Tursina, A. I., Noël, H., Rogl, P., Grytsiv, A. V., Gribanov, A. V., Giester, G., Seropegin, Y. D. J. Alloys Compd. 2007, 442, 89–92; https://doi.org/10.1016/j.jallcom.2006.08.346.Search in Google Scholar
41. Chabot, B., Cenzual, K., Parthé, E. Acta Crystallogr. 1981, A37, 6–11; https://doi.org/10.1107/s0567739481000028.Search in Google Scholar
42. Kreiner, G., Franzen, H. F. J. Alloys Compd. 1995, 221, 15–36; https://doi.org/10.1016/0925-8388(94)01374-8.Search in Google Scholar
43. Bodak, O., Demchenko, P., Seropegin, Y., Fedorchuk, A. Z. Kristallogr. 2006, 221, 482–492; https://doi.org/10.1524/zkri.2006.221.5-7.482.Search in Google Scholar
44. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Search in Google Scholar
45. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar
46. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar
47. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar
48. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations Between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.Search in Google Scholar
49. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar
50. Dwight, A. E., Kimball, C. W. J. Less -Common Met. 1987, 127, 179–182; https://doi.org/10.1016/0022-5088(87)90376-6.Search in Google Scholar
51. Superstructure – Online Dictionary of Crystallography (iucr.org).Search in Google Scholar
52. Wells, A. F. Three-Dimensional Nets and Polyhedra; Wiley: New York, 1977.Search in Google Scholar
53. O’Keefe, M., Hyde, B. G. Crystal Structure I. Patterns and Symmetry; Mineral Society of America: Washington DC, 1996.Search in Google Scholar
54. Eifert, B., Crystallica, H. C. A Package to Plot Crystal Structures; Institute for Theoretical Physics, JLU Giessen: Germany, 2016.Search in Google Scholar
55. Wolfram Research, Inc. Mathematica, Version 13.0.0: Champaign, IL, 2021.Search in Google Scholar
56. Brunner, G. O., Schwarzenbach, D. Z. Kristallogr. 1971, 133, 127–133; https://doi.org/10.1524/zkri.1971.133.133.127.Search in Google Scholar
57. Putz, H., Brandenburg, K. Diamond: Crystal and Molecular Structure Visualization (release 4.6.7); Crystal Impact GbR: Bonn, Germany, 2022.Search in Google Scholar
58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
59. Iandelli, A., Palenzona, A. Rev. Chim. Miner. 1976, 13, 55–61.Search in Google Scholar
60. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182–185; https://doi.org/10.1016/s0925-8388(96)02402-4.Search in Google Scholar
61. Galadzhun, Y. V., Hoffmann, R.-D., Heletta, L., Horiacha, M., Pöttgen, R. Z. Anorg. Allg. Chem. 2018, 644, 1513–1518; https://doi.org/10.1002/zaac.201800188.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0031).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers