Abstract
Four complex metal antimony tartrates have been synthesized in single crystal form by slowly evaporating aqueous solutions of potassium antimony tartrate (tartar emetic) and metal nitrates or chlorides. Crystal structures of these compounds all contain infinite layers formed by linking antimony tartrate dimers with M–O bonds, with M = Li, La, Ce or Nd. Dehydration of the La and Ce compounds at elevated temperatures led to new layered structures via single-crystal to single-crystal transformations.
Funding source: Robert. A. Welch Foundation
Award Identifier / Grant number: E-0024
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was funded by Robert A. Welch Foundation (Grant No. E-0024).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bohatý, L., Fröhlich, R., Tebbe, K. F. The crystal-structures of calcium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis[antimonate(iii)]-dihydrate Ca[Sb2((+)-C4H2O6)2]·2H2O and barium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis(antimonate(iii)]-trihydrate Ba[Sb2((+)-C4H2O6)2]·3H2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1983, 39, 59–63.10.1107/S0108270183003595Suche in Google Scholar
2. Bohatý, L., Fröhlich, R. The crystal-structures of strontium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis[antimonate(iii)]-dihydrate, Sr[Sb2((+)-C4H2O6)2]·2H2O. Z. Kristallogr. 1983, 163, 261–265.Suche in Google Scholar
3. Sagatys, D. S., Smith, G., Lynch, D. E., Kennard, C. H. Structure of polymeric antimony silver(I) (+)-tartrate. J. Chem. Soc., Dalton Trans. 1991, 1991, 361–364; https://doi.org/10.1039/dt9910000361.Suche in Google Scholar
4. Gao, Q., Wang, X., Jacobson, A. J. Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit. Inorg. Chem. 2011, 50, 9073–9082; https://doi.org/10.1021/ic201274c.Suche in Google Scholar PubMed
5. He, J., Zhang, G., Xiao, D., Chen, H., Yan, S., Wang, X., Yang, J., Yuan, R., Wang, E. From racemic compound to spontaneous resolution: a series of homochiral lanthanide coordination polymers constructed from presynthesized [Sb2(tart)2]2− metalloligands. J. Mol. Struct. 2012, 1018, 131–136; https://doi.org/10.1016/j.molstruc.2012.03.002.Suche in Google Scholar
6. Zhang, G. J., Xiao, D. R., Sun, D. Z., Chen, H. Y., He, J. H., Yuan, R., Wang, E. B. Bottom-up synthesis of three heterometallic coordination polymers with layered structures constructed from presynthesized [Sb2(tart)2]2− metalloligands. Solid State Sci. 2012, 14, 62–71; https://doi.org/10.1016/j.solidstatesciences.2011.10.017.Suche in Google Scholar
7. Wang, X., Makarenko, T., Jacobson, A. J. Synthesis and structural phase transitions of [Mg2Sb2(C4H2O6)2(H2O)8)](ClO4)2·5H2O with complex homochiral chains. Z. Kristallogr. – Cryst. Mater. 2016, 231, 441–448; https://doi.org/10.1515/zkri-2016-1954.Suche in Google Scholar
8. Wang, X., Jacobson, A. J. Crystal structures with infinite chains based on antimony tartrate dimers. Z. Kristallogr. – Cryst. Mater. 2021, 236, 277–281; https://doi.org/10.1515/zkri-2021-2047.Suche in Google Scholar
9. Bohatý, L. Hexagonal antimony tartrates Ca[Sb2((+)-C4H2O6)2]·2H2O and Sr[Sb2((+)-C4H2O6)2]·2H2O – crystal-growth, electrooptical and electrostrictive properties. Z. Kristallogr. 1983, 163, 255–260.Suche in Google Scholar
10. Bohatý, L., Fröhlich, R. Crystal-growth, crystal-structure, optical, electrooptic and electrostrictive properties of the orthorhombic tartrato-antimonate-(iii) nitrate KZn[Sb2((+)-C4H2O6)2]NO3·5H2O (KZnSbTN). Z. Kristallogr. 1994, 209, 14–17.10.1524/zkri.1994.209.1.14Suche in Google Scholar
11. Bohatý, L., Held, P., Becker, P. Crystal growth, crystal structure and optical properties of calcium antimony tartrate nonahydrate, Ca[Sb2((+)-C4H2O6)2]·9H2O. Cryst. Res. Technol. 2015, 50, 950–956.10.1002/crat.201500269Suche in Google Scholar
12. Bohatý, L., Held, P., Schneeberger, H., Zheng, T. Y., Becker, P. Crystal growth, crystal structure and pyroelectric properties of the polar hexagonal antimony tartrates MII[Sb2(C4H2O6)2]·2H2O (MII = Ca, Sr, Pb). Cryst. Res. Technol. 2015, 50, 482–489.10.1002/crat.201500049Suche in Google Scholar
13. Bohatý, L., Matulkova, I., Cisarova, I., Nemec, I., Schneeberger, H., Kaminskii, A. A., Becker, P. Crystal growth, thermal expansion, pyroelectricity and vibrational spectroscopy of barium antimony tartrate, Ba[Sb2((+)C4H2O6)2]·3H2O. Opt. Mater. 2019, 91, 70–79.10.1016/j.optmat.2019.02.051Suche in Google Scholar
14. Wang, X., Makarenko, T., Jacobson, A. J. Stacking changes of KLi[Sb2(C4H2O6)2] homochiral layers mediated by interlayer solvent molecules. Z. Kristallogr. – Cryst. Mater. 2017, 232, 689–695; https://doi.org/10.1515/zkri-2017-2047.Suche in Google Scholar
15. Sheldrick, G. M. Shelxl–Integrated space-group and crystal-structure determination. Acta Crystallogr. A: Found. Adv. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central
16. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C: Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
17. Minguzzi, C. Ricerche cristallografiche ed ottiche sopra alcuni nuovi tartrati delle terre rare con antimonile e cloruro di potassio. Period. Mineral. 1936, 7, 77–97.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers
Artikel in diesem Heft
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers