Startseite Layered structures based on antimony tartrate dimers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Layered structures based on antimony tartrate dimers

  • Xiqu Wang EMAIL logo und Allan J. Jacobson
Veröffentlicht/Copyright: 11. Juli 2022

Abstract

Four complex metal antimony tartrates have been synthesized in single crystal form by slowly evaporating aqueous solutions of potassium antimony tartrate (tartar emetic) and metal nitrates or chlorides. Crystal structures of these compounds all contain infinite layers formed by linking antimony tartrate dimers with M–O bonds, with M = Li, La, Ce or Nd. Dehydration of the La and Ce compounds at elevated temperatures led to new layered structures via single-crystal to single-crystal transformations.


Corresponding author: Xiqu Wang, Department of Chemistry and Texas Center for Superconductivity, University of Houston, 77204-5003 Houston, Texas, USA, E-mail:

Award Identifier / Grant number: E-0024

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Robert A. Welch Foundation (Grant No. E-0024).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bohatý, L., Fröhlich, R., Tebbe, K. F. The crystal-structures of calcium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis[antimonate(iii)]-dihydrate Ca[Sb2((+)-C4H2O6)2]·2H2O and barium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis(antimonate(iii)]-trihydrate Ba[Sb2((+)-C4H2O6)2]·3H2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1983, 39, 59–63.10.1107/S0108270183003595Suche in Google Scholar

2. Bohatý, L., Fröhlich, R. The crystal-structures of strontium-bis[μ-(+)-tartrato(4-)-O,O′ – O″,O‴]-bis[antimonate(iii)]-dihydrate, Sr[Sb2((+)-C4H2O6)2]·2H2O. Z. Kristallogr. 1983, 163, 261–265.Suche in Google Scholar

3. Sagatys, D. S., Smith, G., Lynch, D. E., Kennard, C. H. Structure of polymeric antimony silver(I) (+)-tartrate. J. Chem. Soc., Dalton Trans. 1991, 1991, 361–364; https://doi.org/10.1039/dt9910000361.Suche in Google Scholar

4. Gao, Q., Wang, X., Jacobson, A. J. Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit. Inorg. Chem. 2011, 50, 9073–9082; https://doi.org/10.1021/ic201274c.Suche in Google Scholar PubMed

5. He, J., Zhang, G., Xiao, D., Chen, H., Yan, S., Wang, X., Yang, J., Yuan, R., Wang, E. From racemic compound to spontaneous resolution: a series of homochiral lanthanide coordination polymers constructed from presynthesized [Sb2(tart)2]2− metalloligands. J. Mol. Struct. 2012, 1018, 131–136; https://doi.org/10.1016/j.molstruc.2012.03.002.Suche in Google Scholar

6. Zhang, G. J., Xiao, D. R., Sun, D. Z., Chen, H. Y., He, J. H., Yuan, R., Wang, E. B. Bottom-up synthesis of three heterometallic coordination polymers with layered structures constructed from presynthesized [Sb2(tart)2]2− metalloligands. Solid State Sci. 2012, 14, 62–71; https://doi.org/10.1016/j.solidstatesciences.2011.10.017.Suche in Google Scholar

7. Wang, X., Makarenko, T., Jacobson, A. J. Synthesis and structural phase transitions of [Mg2Sb2(C4H2O6)2(H2O)8)](ClO4)2·5H2O with complex homochiral chains. Z. Kristallogr. – Cryst. Mater. 2016, 231, 441–448; https://doi.org/10.1515/zkri-2016-1954.Suche in Google Scholar

8. Wang, X., Jacobson, A. J. Crystal structures with infinite chains based on antimony tartrate dimers. Z. Kristallogr. – Cryst. Mater. 2021, 236, 277–281; https://doi.org/10.1515/zkri-2021-2047.Suche in Google Scholar

9. Bohatý, L. Hexagonal antimony tartrates Ca[Sb2((+)-C4H2O6)2]·2H2O and Sr[Sb2((+)-C4H2O6)2]·2H2O – crystal-growth, electrooptical and electrostrictive properties. Z. Kristallogr. 1983, 163, 255–260.Suche in Google Scholar

10. Bohatý, L., Fröhlich, R. Crystal-growth, crystal-structure, optical, electrooptic and electrostrictive properties of the orthorhombic tartrato-antimonate-(iii) nitrate KZn[Sb2((+)-C4H2O6)2]NO3·5H2O (KZnSbTN). Z. Kristallogr. 1994, 209, 14–17.10.1524/zkri.1994.209.1.14Suche in Google Scholar

11. Bohatý, L., Held, P., Becker, P. Crystal growth, crystal structure and optical properties of calcium antimony tartrate nonahydrate, Ca[Sb2((+)-C4H2O6)2]·9H2O. Cryst. Res. Technol. 2015, 50, 950–956.10.1002/crat.201500269Suche in Google Scholar

12. Bohatý, L., Held, P., Schneeberger, H., Zheng, T. Y., Becker, P. Crystal growth, crystal structure and pyroelectric properties of the polar hexagonal antimony tartrates MII[Sb2(C4H2O6)2]·2H2O (MII = Ca, Sr, Pb). Cryst. Res. Technol. 2015, 50, 482–489.10.1002/crat.201500049Suche in Google Scholar

13. Bohatý, L., Matulkova, I., Cisarova, I., Nemec, I., Schneeberger, H., Kaminskii, A. A., Becker, P. Crystal growth, thermal expansion, pyroelectricity and vibrational spectroscopy of barium antimony tartrate, Ba[Sb2((+)C4H2O6)2]·3H2O. Opt. Mater. 2019, 91, 70–79.10.1016/j.optmat.2019.02.051Suche in Google Scholar

14. Wang, X., Makarenko, T., Jacobson, A. J. Stacking changes of KLi[Sb2(C4H2O6)2] homochiral layers mediated by interlayer solvent molecules. Z. Kristallogr. – Cryst. Mater. 2017, 232, 689–695; https://doi.org/10.1515/zkri-2017-2047.Suche in Google Scholar

15. Sheldrick, G. M. Shelxl–Integrated space-group and crystal-structure determination. Acta Crystallogr. A: Found. Adv. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

16. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C: Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

17. Minguzzi, C. Ricerche cristallografiche ed ottiche sopra alcuni nuovi tartrati delle terre rare con antimonile e cloruro di potassio. Period. Mineral. 1936, 7, 77–97.Suche in Google Scholar

Received: 2022-05-19
Accepted: 2022-06-25
Published Online: 2022-07-11
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0033/html
Button zum nach oben scrollen