Abstract
The comparison of the evolution of the mechanical properties (elastic modulus and hardness) after step-wise thermal annealing for 1 and 16 h up to 900 K of a radiation-damaged pyrochlore (∼35% amorphous fraction; 1.8 wt% ThO2) provides insights to the time-temperature dependence of the recrystallization behavior. Especially the elastic modulus, directly related to interatomic bonding, enables the correlation with the amount of amorphous fraction. From this a pronounced effect of the annealing time on percolation behavior could be deduced. Evolved gas analysis indicate dehydration in the course of the structural reorganization process.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: BE 5456/2-1
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – No. BE 5456/2-1 (T.B.).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chakoumakos, B. C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 1984, 53, 120–129. https://doi.org/10.1016/0022-4596(84)90234-2.Search in Google Scholar
2. Lumpkin, G. R., Ewing, R. C. Alpha-decay damage in minerals of the pyrochlore group. Phys. Chem. Miner. 1988, 16, 2–20. https://doi.org/10.1007/bf00201325.Search in Google Scholar
3. Atencio, D., Gieré, R., Andrade, M. B., Christy, A. G., Kartashov, P. M. The pyrochlore supergroup of minerals: nomenclature. Can. Mineral. 2010, 48, 673–698. https://doi.org/10.3749/canmin.48.3.673.Search in Google Scholar
4. Lumpkin, G. R. Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J. Nucl. Mater. 2001, 289, 136–166. https://doi.org/10.1016/s0022-3115(00)00693-0.Search in Google Scholar
5. Ewing, R. C., Chakoumakos, B. C., Lumpkin, G. R., Murakami, T., Greegor, R. B., Lytle, F. W. Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear waste forms. Nucl. Instrum. Methods B 1988, 32, 487–497. https://doi.org/10.1016/0168-583x(88)90259-5.Search in Google Scholar
6. Ewing, R. C., Weber, W. J., Clinard Jr, F. W. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. https://doi.org/10.1016/0149-1970(94)00016-y.Search in Google Scholar
7. Ewing, R. C. Displaced by radiation. Nature 2007, 445, 161–162. https://doi.org/10.1038/445161a.Search in Google Scholar PubMed
8. Salje, E. K. H., Chrosch, J., Ewing, R. C. Is “metamictization” of zircon a phase transition? Am. Mineral. 1999, 84, 1107–1116. https://doi.org/10.2138/am-1999-7-813.Search in Google Scholar
9. Beirau, T., Huber, N. Percolation transitions in pyrochlore: radiation-damage and thermally induced structural reorganization. Appl. Phys. Lett. 2021, 119, 131905. https://doi.org/10.1063/5.0068685.Search in Google Scholar
10. Soyarslan, C., Bargmann, S., Pradas, M., Weissmüller, J. 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater. 2018, 149, 326–340. https://doi.org/10.1016/j.actamat.2018.01.005.Search in Google Scholar
11. Huber, N., Beirau, T. Modelling the effect of intrinsic radiation damage on mechanical properties: the crystalline-to-amorphous transition in zircon. Scripta Mater. 2021, 197, 113789. https://doi.org/10.1016/j.scriptamat.2021.113789.Search in Google Scholar
12. Zietlow, P., Beirau, T., Mihailova, B., Groat, L. A., Chudy, T., Shelyug, A., Navrotsky, A., Ewing, R. C., Schlüter, J., Skoda, R., Bismayer, U. Thermal annealing of natural, radiation-damaged pyrochlore. Z. Kristallogr. 2017, 232, 25–38. https://doi.org/10.1515/zkri-2016-1965.Search in Google Scholar
13. Reissner, C. E., Roddatis, V., Bismayer, U., Schreiber, A., Pöllmann, H., Beirau, T. Mechanical and structural response of radiation-damaged pyrochlore to thermal annealing. Materialia 2020, 14, 100950. https://doi.org/10.1016/j.mtla.2020.100950.Search in Google Scholar
14. Li, X., Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Char. 2002, 48, 11–36. https://doi.org/10.1016/s1044-5803(02)00192-4.Search in Google Scholar
15. Oliver, W. C., Pharr, G. M. Measurement of hardness and elastic modulus by instrument indentation: advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. https://doi.org/10.1557/jmr.2004.19.1.3.Search in Google Scholar
16. Oliver, W. C., Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. https://doi.org/10.1557/jmr.1992.1564.Search in Google Scholar
17. Joslin, D. L., Oliver, W. C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 1990, 5, 123–126. https://doi.org/10.1557/jmr.1990.0123.Search in Google Scholar
18. Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. https://doi.org/10.1016/0020-7225(65)90019-4.Search in Google Scholar
19. Zhang, M., Salje, E. K. H., Malcherek, T., Bismayer, U., Groat, L. A. Dehydration OF metamict titanite: an infrared spectroscopic study. Can. Mineral. 2000, 38, 119–130. https://doi.org/10.2113/gscanmin.38.1.119.Search in Google Scholar
20. Reissner, C. E., Bismayer, U., Kern, D., Reissner, M., Park, S., Zhang, J., Ewing, R. C., Shelyug, A., Navrotsky, A., Paulmann, C., Škoda, R., Groat, L. A., Pöllmann, H., Beirau, T. Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. Phys. Chem. Miner. 2019, 46, 921–933. https://doi.org/10.1007/s00269-019-01051-z.Search in Google Scholar
21. Salje, E. K. H., Zhang, M. Hydrous species in ceramics for the encapsulation of nuclear waste: OH in zircon. J. Phys.: Condens. Matter 2006, 18, L277–L281. https://doi.org/10.1088/0953-8984/18/22/l01.Search in Google Scholar
22. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 2010, 11, 940–950. https://doi.org/10.1002/cphc.200900943.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers