Abstract
There are reported two related structures of Ba5Mg4C54O48H114 (dodeca(aqua-6κ3O,7κ3O,8κ3O,9κ3O)-tris(μ2-propanoato-1:6κ2O,1κO′)-tris(μ-propanoato-2:7κ2O,2κO′-tris(μ-propanoato-3:8κ2O,3κO′)-tris(μ-propanoato-4:9κ2O,4κO′)-hexakis(μ3-propanoato-1:5κ2O,2:5κ2O′;1:5κ2O,3:5κ2O′;1:5κ2O,4:5κ2O′;2:5κ2O,3:5κ2O′;2:5κ2O,4:5κ2O′;3:5κ2O,4:5κ2O′)-pentabarium tetramagnesium), (I), and Pb5Mg4C54O48H114 (dodeca(aqua-1κ3O,2κ3O,3κ3O,4κ3O)-hexakis(μ3-propanoato-1:5κ2O,2:5κ2O′;1:5κ2O,3:5κ2O′;1:5 κ2O,4:5κ2O′;2:5κ2O,3:5κ2O′;2:5κ2O,4:5κ2O′;3:5κ2O,4:5κ2O′)tetramagnesium lead(II) tris(propanoato-κ2O,O′)plumbate(II)), (II). The title structures are compositional isomers which crystallize in the same space group type. The structure of (I) comprises molecules with symmetry
Funding source: Grant Agency of the Czech Republic
Award Identifier / Grant number: Project No. 19-28594X
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Czech Science Foundation (Project No. 19-28594X) which was granted to the Institute of Physics of the Academy of Sciences of the Czech Republic.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Stadnicka, K., Glazer, A. M. Acta Crystallogr. 1980, B36, 2977–2985; https://doi.org/10.1107/s0567740880010643.Search in Google Scholar
2. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar PubMed PubMed Central
3. Kasatani, H. J. Phys. Soc. Jpn. 1990, 59, 1647–1659; https://doi.org/10.1143/jpsj.59.1647.Search in Google Scholar
4. Mishima, N. J. Phys. Soc. Jpn. 1984, 53, 1062–1070; https://doi.org/10.1143/jpsj.53.1062.Search in Google Scholar
5. Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E., Parthé, E. Acta Crystallogr. 1990, A46, 1–11; https://doi.org/10.1107/s0108767389008834.Search in Google Scholar
6. Coker, E. N., Boyle, T. J., Rodriguez, M. A., Alam, T. M. Polyhedron 2004, 23, 1739–1747; https://doi.org/10.1016/j.poly.2004.04.005.Search in Google Scholar
7. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
8. Nakamura, N., Suga, H., Chihara, H., Seki, S. Bull. Chem. Soc. Jpn. 1968, 41, 291–296; https://doi.org/10.1246/bcsj.41.291.Search in Google Scholar
9. Fábry, J., Dušek, M. Acta Crystallogr. 2021, C77, 683–690.10.1107/S205322962101024XSearch in Google Scholar
10. Fábry, J., Samolová, E., Dušek, M. 2022. In preparation.Search in Google Scholar
11. Gesi, K., Ozawa, K. J. Phys. Soc. Jpn. 1975, 39, 1026–1031; https://doi.org/10.1143/jpsj.39.1026.Search in Google Scholar
12. Petrenko, P. A., Kiosse, G. A., Malinovskij, T. I. Kristallografiya 1990, 35, 1415–1420.Search in Google Scholar
13. Nakamura, N., Suga, H., Chihara, H., Seki, S. Bull. Chem. Soc. Jpn. 1965, 38, 1779–1787; https://doi.org/10.1246/bcsj.38.1779.Search in Google Scholar
14. Brese, N. R., O’Keeffe, M. Acta Crystallogr. 1991, B47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar
15. Glazer, A. M., Stadnicka, K., Singh, S. J. Phys. C Solid State Phys. 1981, 14, 5011–5029; https://doi.org/10.1088/0022-3719/14/33/011.Search in Google Scholar
16. Stadnicka, K., Glazer, A. M., Singh, S., Śliwiński, J. J. Phys. C Solid State Phys. 1982, 15, 2577–2586; https://doi.org/10.1088/0022-3719/15/12/007.Search in Google Scholar
17. Powder Diffraction File 4+ (2020). International Centre for Diffraction Data: USA.Search in Google Scholar
18. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
20. Gilli, G., Gilli, P. The Nature of the Hydrogen Bond; Oxford University Press Inc.: New York, 2009; p. 61.10.1093/acprof:oso/9780199558964.001.0001Search in Google Scholar
21. Rigaku, O. D. CrysAlisPro; Rigaku Oxford Diffraction: Yarnton, England, 2019.Search in Google Scholar
22. Brandenburg, K. Diamond; Crystal Impact: Bonn, Germany, 2005.Search in Google Scholar
23. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
24. Eberle, B., Damjanović, M., Enders, M., Leingang, S., Pfisterer, J., Kräme, C., Hübner, O., Kaifer, E., Himmel, H.-J. Inorg. Chem. 2016, 55, 1683–1696; https://doi.org/10.1021/acs.inorgchem.5b02614.Search in Google Scholar PubMed
25. Chen, Y.-T., Chun-Yen, L., Gene-Hsiang, L., Mei-Lin, H. CrystEngComm 2015, 17, 2129–2140; https://doi.org/10.1039/c4ce02457e.Search in Google Scholar
26. Ng, S. W. Acta Crystallogr. 2021, C77, 443–448.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2074).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Crystal structure and magnetic properties of some compounds with GdNi2Ga3In type structure
- Partially disordered pyrochlore: time-temperature dependence of recrystallization and dehydration
- Lu37Ru16.4In4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure
- BaFe0.875Re0.125O3−δ and BaFe0.75Ta0.25O3−δ as potential cathodes for solid-oxide fuel-cells: a structural study from neutron diffraction data
- Unbalanced racemates: solid state solutions containing enantiomeric pairs crystallizing in Sohncke space groups with (L:D) ratios other than (1:1) – illustrated with crystals of a Co(III) coordination compound
- Crystal structure and specific heat of calcium lanthanide oxyborates Ca4LnO(BO3)3
- Order-disorder (OD) structures of Rb2Zn(TeO3)(CO3)·H2O and Na2Zn2Te4O11
- Na2Cu+[Cu2+3O](AsO4)2Cl and Cu3[Cu3O]2(PO4)4Cl2: two new structure types based upon chains of oxocentered tetrahedra
- Organic and Metalorganic Crystal Structures (Original Paper)
- Two isomers Ba5Mg4C54O48H114 and Pb5Mg4C54O48H114
- Layered structures based on antimony tartrate dimers