Abstract
An achiral tripeptide, namely, Boc-γ-Abu-m-ABA-Aib-OMe (γ-Abu: γ−amino butyric acid; m-ABA: meta-aminobenzoic acid) was synthesized by solution phase procedure. The α, γ-hybrid peptide was designed in such a way that two dissimilar γ−amino acids, one flexible and another rigid, were positioned sidewise along with α-amino isobutyric acid (Aib) as C-terminal residue. The single crystal X-ray diffraction analysis revealed that two kinks were generated around centrally placed m-ABA. Interestingly, the peptide self-assembled via three intermolecular N–H···O and one intermolecular C–H···O hydrogen bonding interactions to supramlecular helical architecture.
Acknowledgments
AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati. PD is greateful to SERB (DST), India for fellowship [No.TAR/2018/000228].
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Pieters, B. J. G. E., van Eldijk, M. B., Nolte, R. J. M., Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39; https://doi.org/10.1039/c5cs00157a.Suche in Google Scholar PubMed
2. Savyasachi, A. J., Kotova, O., Shanmugaraju, S., Bradberry, S. J., Ó’Máille, G. M., Gunnlaugsson, T. Supramolecular chemistry: a toolkit for soft functional materials and organic particles. Chem 2017, 3, 764–811; https://doi.org/10.1016/j.chempr.2017.10.006.Suche in Google Scholar
3. Williams, G. T., Haynes, C. J. E., Fares, M., Caltagirone, C., Hiscock, J. R., Gale, P. A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021, 50, 2737–2763; https://doi.org/10.1039/d0cs00948b.Suche in Google Scholar PubMed
4. Sheehan, F., Sementa, D., Jain, A., Kumar, M., Tayarani-Najjaran, M., Kroiss, D., Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914; https://doi.org/10.1021/acs.chemrev.1c00089.Suche in Google Scholar PubMed
5. Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151–160; https://doi.org/10.1039/b616752g.Suche in Google Scholar PubMed
6. Ulijn, R. V., Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 2008, 37, 664–675; https://doi.org/10.1039/b609047h.Suche in Google Scholar PubMed
7. Yuan, C., Ji, W., Xing, R., Li, J., Gazit, E., Yan, X. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588; https://doi.org/10.1038/s41570-019-0129-8.Suche in Google Scholar
8. De Santis, E., Ryadnov, M. G. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem. Soc. Rev. 2015, 44, 8288–8300; https://doi.org/10.1039/c5cs00470e.Suche in Google Scholar PubMed
9. Levin, A., Hakala, T. A., Schnaider, L., Bernardes, G. J. L., Gazit, E., Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634; https://doi.org/10.1038/s41570-020-0215-y.Suche in Google Scholar
10. Giri, R. S., Mandal, B. Supramolecular helical assembly of small peptides. CrystEngComm 2022, 24, 10–32; https://doi.org/10.1039/d1ce01349a.Suche in Google Scholar
11. Kar, S., Tai, Y. Marked difference in self-assembly, morphology, and cell viability of positional isomeric dipeptides generated by reversal of sequence. Soft Matter 2015, 11, 1345–1351; https://doi.org/10.1039/c4sm02537g.Suche in Google Scholar PubMed
12. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study. Z. Kristallogr. 2020, 235, 47–51; https://doi.org/10.1515/zkri-2019-0062.Suche in Google Scholar
13. Koley, P., Pramanik, A. Nanostructures from single amino acid-based molecules: stability, fibrillation, encapsulation, and fabrication of silver nanoparticles. Adv. Funct. Mater. 2011, 21, 4126–4136; https://doi.org/10.1002/adfm.201101465.Suche in Google Scholar
14. Kim, S., Kim, J. H., Lee, J. S., Park, C. B. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 2015, 11, 3623–3640; https://doi.org/10.1002/smll.201500169.Suche in Google Scholar PubMed
15. Konar, A. D. Can a single pyridine dicarboxylic acid be ample enough to nucleate supramolecular double helices in enantiomeric pseudopeptides? CrystEngComm 2013, 15, 2466–2473; https://doi.org/10.1039/c3ce26912d.Suche in Google Scholar
16. Shankar, S., Rahim, J. U., Rai, R. Self-assembly in peptides containing β- and γ-amino acids. Curr. Protein Pept. Sci. 2020, 21, 584–597; https://doi.org/10.2174/1389203721666200127112244.Suche in Google Scholar PubMed
17. Dutt, A., Drew, M. G. B., Pramanik, A. β-sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state. Org. Biomol. Chem. 2005, 3, 2250–2254; https://doi.org/10.1039/b504112k.Suche in Google Scholar PubMed
18. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide. Z. Kristallogr. 2021, 236, 123–127; https://doi.org/10.1515/zkri-2021-2006.Suche in Google Scholar
19. Sarkar, R., Debnath, M., Maji, K., Haldar, D. Solvent assisted structural diversity: supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Adv. 2015, 5, 76257–76262; https://doi.org/10.1039/c5ra12831e.Suche in Google Scholar
20. Dutta, A., Kar, S., Frohlich, R., Koley, P., Pramanik, A. A terminally modified pseudopeptide (Gly-m-aminobenzoic acid) produces supramolecular helix, staircase and water-mediated β-sheet through self-assembly. ARKIVOC 2009, ii, 31–43; https://doi.org/10.3998/ark.5550190.0010.204.Suche in Google Scholar
21. Schweitzer-Stenner, R., Gonzales, W., Bourne, G. T., Feng, J. A., Marshall, G. R. Conformational manifold of α-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. J. Am. Chem. Soc. 2007, 129, 13095–13109; https://doi.org/10.1021/ja0738430.Suche in Google Scholar
22. Zieleniewski, F., Woolfson, D. N., Clayden, J. Automated solid-phase concatenation of Aib residues to form long, water-soluble, helical peptides. Chem. Commun. 2020, 56, 12049–12052; https://doi.org/10.1039/d0cc04698a.Suche in Google Scholar
23. Konar, A. D. mABA inserted supramolecular triple helix formation in the solid state in synthetic tripeptides containing β-cyanoalanine and Aib as corner residues. CrystEngComm 2012, 14, 6689–6694; https://doi.org/10.1039/c2ce25527h.Suche in Google Scholar
24. Haldar, D., Maji, S. K., Sheldrick, W. S., Banerjee, A. First crystallographic signature of the highly ordered supramolecular helical assemblage from a tripeptide containing a non-coded amino acid. Tetrahedron Lett. 2002, 43, 2653–2656; https://doi.org/10.1016/s0040-4039(02)00283-6.Suche in Google Scholar
25. Jana, P., Maity, S., Maity, S. K., Haldar, D. A new peptide motif in the formation of supramolecular double helices. Chem. Commun. 2011, 47, 2092–2094; https://doi.org/10.1039/c0cc04244g.Suche in Google Scholar PubMed
26. Bodanszky, M., Bodanszky, A. The Practice of Peptide Synthesis; Spinger-Verlag: New York, 1984; pp. 1–282.10.1007/978-3-642-96835-8Suche in Google Scholar
27. Bruker, smart, saint and sadabs; Bruker AXS Inc.: Madison, 2000.Suche in Google Scholar
28. Sheldrick, G. M. A short history of shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed
29. Sheldrick, G. M. Crystal structure refinement with shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar
30. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0002).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide