Home The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
Article
Licensed
Unlicensed Requires Authentication

The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain

  • Christian Paulsen , Jutta Kösters , Stefan Seidel , Yoshiki Kuwata , Hisashi Kotegawa , Hideki Tou , Hitoshi Sugawara , Hisatomo Harima and Rainer Pöttgen EMAIL logo
Published/Copyright: December 2, 2021

Abstract

The equiatomic metal-rich phosphide NbCrP shows a structural phase transition around 125 K. The structures of the high- and low-temperature modifications were refined from single crystal X-ray diffractometer data of an un-twinned crystal: TiNiSi type, Pnma, a = 619.80(2), b = 353.74(4), c = 735.24(6) pm, wR = 0.0706, 288 F 2 values, 20 variables at 240 K and P121/c1, a = 630.59(3), b = 739.64(4), c = 933.09(5) pm, β = 132.491(6)°, wR = 0.0531, 1007 F 2 values, 57 variables at 90 K. The structural phase transition is of a classical Peierls type. The equidistant chromium chain in HT-NbCrP (353.7 pm Cr–Cr) splits pairwise into shorter (315.2 pm) and longer (373.2 pm) Cr–Cr distances. This goes along with a strengthening of Cr–P bonding. The superstructure formation is discussed on the basis of a group–subgroup scheme. Electronic structure calculations show a lifting of band degeneracy. Protection of the non-symmorphic symmetry of space group Pnma is crucial for the phase transition. The estimated charge modulation is consistent with the interpretation as Peierls transition.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

3. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar

4. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar

5. Landrum, G. A., Hoffmann, R., Evers, J., Boysen, H. Inorg. Chem. 1998, 37, 5754–5763; https://doi.org/10.1021/ic980223e.Search in Google Scholar

6. Jeitschko, W. Acta Crystallogr. 1968, B24, 930–934; https://doi.org/10.1107/s0567740868003432.Search in Google Scholar

7. Jeitschko, W., Altmeyer, R. O. Z. Naturforsch. 1990, 45b, 947–951; https://doi.org/10.1515/znb-1990-0705.Search in Google Scholar

8. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183.10.1107/S0108767384000416Search in Google Scholar

9. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar

10. Dörrscheidt, W., Niess, N., Schäfer, H. Z. Naturforsch. 1977, 32b, 985–988.10.1515/znb-1977-0905Search in Google Scholar

11. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

12. Prots’ Yu, M., Pöttgen, R., Niepmann, D., Wolff, M., Jeitschko, W. J. Solid State Chem. 1999, 142, 400–408; https://doi.org/10.1006/jssc.1998.8055.Search in Google Scholar

13. Canepa, F., Manfrinetti, P., Pani, M., Palenzona, A. J. Alloys Compd. 1996, 234, 225–230; https://doi.org/10.1016/0925-8388(95)02037-3.Search in Google Scholar

14. Lomnitskaya, Y. F., Zakharets, L. I., Kondratyuk, G. D. Inorg. Mater. 1988, 24, 505–509.Search in Google Scholar

15. Kuwata, Y., Kotegawa, H., Tou, H., Harima, H., Ding, Q.-P., Takeda, K., Hayashi, J., Matsuoka, E., Sugawara, H., Sakurai, T., Ohta, H., Furukawa, Y. Phys. Rev. B 2020, 102, 205110; https://doi.org/10.1103/physrevb.102.205110.Search in Google Scholar

16. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar PubMed

17. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar

18. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar

19. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar

20. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983–4996; https://doi.org/10.1063/1.441887.Search in Google Scholar

21. Burdett, J. K., Lee, S. J. Am. Chem. Soc. 1983, 105, 1079–1083; https://doi.org/10.1021/ja00343a001.Search in Google Scholar

22. Meyer, H.-J. Festkörperchemie. In Riedel – Moderne Anorganische Chemie; Janiak, C., Meyer, H.-J., Gudat, D., Kurz, P., Eds.5th ed.; De Gruyter: Berlin, 2018. Chapter 2.10.1515/9783110441635-002Search in Google Scholar

23. Sakamoto, I., Chen, G. F., Ohara, S., Harima, H., Maruno, S. Proceedings of the 4th international conference on f-elements. J. Alloys Compd. 2001, 623, 323–324.10.1016/S0925-8388(01)01193-8Search in Google Scholar

24. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

25. Petříček, V., Dušek, M., Palatinus, L. JANA2006. The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar

26. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

27. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

28. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar

29. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations between Space Groups; John Wiley & Sons: Chichester, UK, 2010.Search in Google Scholar

30. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

31. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

32. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1653–1682; https://doi.org/10.1002/hlca.200390140.Search in Google Scholar

33. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1683–1708; https://doi.org/10.1002/hlca.200390141.Search in Google Scholar

34. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

35. Kuz’ma, Y., Chykhrij, S. Phosphides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, Vol. 23, 1996; pp 285–433. Chapter 156.10.1016/S0168-1273(96)23007-7Search in Google Scholar

36. Chykhrij, S. I. Pol. J. Chem. 1999, 73, 1595–1611.Search in Google Scholar

37. Pöttgen, R., Hönle, W., von Schnering, H. G. Phosphides: Solid State Chemistry. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed. Wiley: New York, Vol. VII, 2nd ed., 2005; pp. 4255–4308.10.1002/9781119951438.eibc0170Search in Google Scholar

38. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

39. Jeitschko, W., Brink, R. Z. Naturforsch. 1992, 47b, 192–196.Search in Google Scholar

40. Rundqvist, S. Acta Chem. Scand. 1966, 20, 2427–2434; https://doi.org/10.3891/acta.chem.scand.20-2427.Search in Google Scholar

41. Charki, F., Députier, S., Bénard-Rocherullé, P., Guérin, R., Bouayed, M., Le Beuze, A., Saillard, J. Y. Solid State Sci. 1999, 1, 607–622; https://doi.org/10.1016/s1293-2558(00)80112-0.Search in Google Scholar

42. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

43. Duwez, P. E., Martens, H. Trans. Am. Inst. Min. Metall. Pet. Eng. 1952, 194, 72–74; https://doi.org/10.1007/bf03397652.Search in Google Scholar

44. Touzani, R. St., Fokwa, B. P. T. J. Solid State Chem. 2014, 211, 227–234; https://doi.org/10.1016/j.jssc.2013.10.013.Search in Google Scholar

45. Touzani, R. S., Rehorn, C. W. G., Fokwa, B. P. T. Comput. Mater. Sci. 2015, 104, 52–59; https://doi.org/10.1016/j.commatsci.2015.03.036.Search in Google Scholar

46. Touzani, R. S., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 4104–4110; https://doi.org/10.1002/ejic.201600689.Search in Google Scholar

47. van Smaalen, S. Acta Crystallogr 2005, A61, 51–61; https://doi.org/10.1107/s0108767304025437.Search in Google Scholar PubMed

48. Graf, C., Assoud, A., Mayasree, O., Kleinke, H. Molecules 2009, 14, 3115–3131; https://doi.org/10.3390/molecules14093115.Search in Google Scholar PubMed PubMed Central

49. Pham, J., Miller, G. J. Inorg. Chem. 2018, 57, 4039–4049; https://doi.org/10.1021/acs.inorgchem.8b00214.Search in Google Scholar PubMed

Received: 2021-10-10
Accepted: 2021-11-15
Published Online: 2021-12-02
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2058/html
Scroll to top button