Abstract
The stannides RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing (1220 K for RE = Y, Gd–Tm and 1170 K for RE = Lu) in sealed silica ampoules for 11 days. X-ray powder diffraction studies confirm the hexagonal Lu3Co2In4 type structure, space group
Acknowledgements
We thank Dipl.-Ing. J. Kösters and Dr. T. Block for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar
2. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar
3. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53, https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar
4. Rundqvist, S., Jellinek, F. Acta Chem. Scand. 1959, 13, 425–432, https://doi.org/10.3891/acta.chem.scand.13-0425.Search in Google Scholar
5. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar
6. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Search in Google Scholar
7. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar
8. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606, https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar
9. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar
10. Jeitschko, W. Acta Crystallogr. B 1970, 26, 815–822, https://doi.org/10.1107/s0567740870003163.Search in Google Scholar
11. Zumdick, M. F., Pöttgen, R. Z. Kristallografiya 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar
12. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Y. M., Seidel, S., Pöttgen, R. Z. Kristallografiya 2021, 236, 81–91, https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar
13. Engelbert, S., Hoffmann, R.-D., Kösters, J., Klenner, S., Pöttgen, R. Z. Kristallografiya 2021, 236, 93–104, https://doi.org/10.1515/zkri-2021-2008.Search in Google Scholar
14. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Sobolev, A. N. Dopov. Akad. Nauk. Ukr. RSR, Ser. B 1989, 2, 37.Search in Google Scholar
15. Rodewald, U. C., Lukachuk, M., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2005, 136, 1985–1991, https://doi.org/10.1007/s00706-005-0375-y.Search in Google Scholar
16. Heying, B., Niehaus, O., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2016, 71b, 1261–1267, https://doi.org/10.1515/znb-2016-0167.Search in Google Scholar
17. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 765–772, https://doi.org/10.1515/znb-2018-0091.Search in Google Scholar
18. Baran, S., Tyvanchuk, Y., Kalychak, Y., Szytuła, A. Phase Transitions 2018, 91, 111–117, https://doi.org/10.1080/01411594.2017.1402178.Search in Google Scholar
19. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Stel’makhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289–295, https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar
20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 361–367, https://doi.org/10.1515/znb-2021-0072.Search in Google Scholar
21. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189, https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar
22. Skolozdra, R. V. Stannides of rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds.; Elsevier Science: Amsterdam, Vol. 24, 1997, p. 399.10.1016/S0168-1273(97)24009-2Search in Google Scholar
23. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr., Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005, pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar
24. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698.10.1515/znb-2006-0607Search in Google Scholar
25. Gupta, S., Suresh, K. G., Nigam, A. K. J. Appl. Phys. 2012, 112, 103909, https://doi.org/10.1063/1.4766900.Search in Google Scholar
26. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
27. Dwight, A. E., Harper, W. C., Kimball, C. W. J. Less-Common Met. 1973, 30, 1–8, https://doi.org/10.1016/0022-5088(73)90002-7.Search in Google Scholar
28. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74, https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
29. Iandelli, A., Palenzona, A., Bonino, G. B. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 1966, 40, 623–628.Search in Google Scholar
30. François, M., Venturini, G., Malaman, B., Roques, B. J. Less-Common. Met. 1990, 160, 197–213.10.1016/0022-5088(90)90381-SSearch in Google Scholar
31. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar
32. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar
33. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871, https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar
34. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138, https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
35. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169–11186, https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed
36. Kresse, G., Joubert, J. Phys. Rev. B 1999, 59, 1758–1775, https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar
37. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.10.1103/PhysRevB.50.17953Search in Google Scholar PubMed
38. Perdew, J., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868, https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
39. Bader, R. F. Chem. Rev. 1991, 91, 893–928, https://doi.org/10.1021/cr00005a013.Search in Google Scholar
40. Eyert, V. The Augmented Spherical Wave Method. A Comprehensive Treatment, Lecture Notes in Physics; Springer: Heidelberg, 2007.Search in Google Scholar
41. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878, https://doi.org/10.1002/anie.198708461.Search in Google Scholar
42. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16, https://doi.org/10.1107/s2052519212051366.Search in Google Scholar
43. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790, https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
44. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallografiya 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
45. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
46. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
47. Fässler, T. F., Hoffmann, S., Kronseder, C. Z. Anorg. Allg. Chem. 2001, 627, 2486–2492.10.1002/1521-3749(200111)627:11<2486::AID-ZAAC2486>3.0.CO;2-ISearch in Google Scholar
48. Kim, S.-J., Fässler, T. F. Z. Kristallogr. NCS 2008, 223, 325–326.10.1524/ncrs.2008.0140Search in Google Scholar
49. Łątka, K., Kmieć, R., Kruk, R., Pacyna, A. W., Fickenscher, T., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2005, 178, 2077–2090.10.1016/j.jssc.2005.04.010Search in Google Scholar
50. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Trill, H., Mosel, B. D., Piotrowski, H., Zumdick, M. F. Z. Naturforsch. 2001, 56b, 589–597, https://doi.org/10.1515/znb-2001-0705.Search in Google Scholar
51. Hoffmann, R.-D., Kußmann, D., Rodewald, U. C., Pöttgen, R., Rosenhahn, C., Mosel, B. D. Z. Naturforsch. 1999, 54b, 709–717, https://doi.org/10.1515/znb-1999-0602.Search in Google Scholar
52. Leithe-Jasper, A., Weitzer, F., Rogl, P., Qi, Q., Coey, J. M. D. Hyperfine Interact. 1994, 94, 2327–2332, https://doi.org/10.1007/bf02063783.Search in Google Scholar
53. Klenner, S., Reimann, M. K., Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 453–461, https://doi.org/10.1515/znb-2021-0080.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide