Home Physical Sciences Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
Article
Licensed
Unlicensed Requires Authentication

Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures

  • Nataliya L. Gulay , Jutta Kösters , Yaroslav M. Kalychak and Rainer Pöttgen EMAIL logo
Published/Copyright: March 22, 2022

Abstract

Phase analytical studies in the Sc–Cu–In system led to samples of the solid solutions ScCu1–xy In1+x and ScCu2–x In which were studied by X-ray powder diffraction. At room temperature the compounds ScCu1–xy In1+x crystallize with the ZrNiAl type, space group P 6 2m. Exemplarily, the structure of ScCu0.76In1.17 was refined from single crystal X-ray diffractometer data, revealing strong anisotropic displacements for the scandium atoms and a mixed occupied Cu/In site. Superstructure formation is observed at low temperatures. The ScCu0.78In1.14 and ScCu0.76In1.16 structures were refined from diffraction data recorded at 90 K. Both compounds adopt the HfRhSn type, space group P 6 2c, a klassengleiche subgroup of index 2; doubling of the subcell c axis. The Cu/In filled trigonal Sc6 prisms are strongly distorted in the superstructure, resulting from pairwise dislocation of the Cu/In atoms from ideal positions within an equidistant chain to shorter (311.0 pm) and longer (392.8 pm) Cu/In–Cu/In distances. Single crystal data of the Heusler phases ScCu1.95In and ScCu1.94In show small degrees of copper vacancies.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Funding source: Deutscher Akademischer Austauschdienst

Acknowledgements

We thank M. Sc. C. Paulsen for the EDX analyses of the single crystals.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The research stay of NG in Münster was supported by the Deutscher Akademischer Austauschdienst.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider Jr, K. A., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 34, chapter 218, 2005; pp. 1–133.10.1016/S0168-1273(04)34001-8Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar

3. Kalychak, Y. M. Visn. Lviv Univ. Ser. Khim. 1999, 38, 70–73.Search in Google Scholar

4. Kalychak, Y. M. Ukr. Chem. J. 1998, 64, 15–20.10.1108/07363769810202718Search in Google Scholar

5. Kalychak, Y. M. Izv. Akad. Nauk. SSSR, Met. 1998, 4, 110–118.Search in Google Scholar

6. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

7. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar

8. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

9. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Trill, H., Mosel, B. D., Piotrowski, H., Zumdick, M. F. Z. Naturforsch. 2001, 56b, 589–597; https://doi.org/10.1515/znb-2001-0705.Search in Google Scholar

10. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771–779; https://doi.org/10.1021/ic061691o.Search in Google Scholar

11. Vogt, C., Hoffmann, R.-D., Pöttgen, R. Solid State Sci. 2005, 7, 1003–1009; https://doi.org/10.1016/j.solidstatesciences.2005.04.004.Search in Google Scholar

12. Vogt, C., Hoffmann, R.-D., Rodewald, U. C., Eickerling, G., Presnitz, M., Eyert, V., Scherer, W., Pöttgen, R. Inorg. Chem. 2009, 48, 6436–6451; https://doi.org/10.1021/ic9002143.Search in Google Scholar

13. Eickerling, G., Hauf, C., Scheidt, E.-W., Reichert, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Romero, A. H., Porcher, F., André, G., Pöttgen, R., Scherer, W. Z. Anorg. Allg. Chem. 2013, 639, 1985–1995; https://doi.org/10.1002/zaac.201200517.Search in Google Scholar

14. Hulliger, F. J. Alloys Compd. 1996, 232, 160–164; https://doi.org/10.1016/0925-8388(95)01925-1.Search in Google Scholar

15. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Y. M., Seidel, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 81–91; https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar

16. Gulay, N. L., Hoffmann, R.-D., Zaremba, V. I., Kalychak, Y. M., Pöttgen, R. Z. Kristallogr. 2020, 235, 417–422; https://doi.org/10.1515/zkri-2020-0032.Search in Google Scholar

17. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Bruskov, V. A. Krystallografija 1991, 36, 1415–1418.Search in Google Scholar

18. Gulay, N. L., Tyvanchuk, Y. B., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. M. J. Alloys Compd. 2020, 815, 152660; https://doi.org/10.1016/j.jallcom.2019.152660.Search in Google Scholar

19. Gulay, N. L., Kösters, J., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 715–720; https://doi.org/10.1515/znb-2020-0048.Search in Google Scholar

20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 799–803; https://doi.org/10.1515/znb-2020-0104.Search in Google Scholar

21. Gulay, N. L., Kalychak, Y. M., Reimann, M. K., Paulsen, C., Kösters, J., Pöttgen, R. Monatsh. Chem. 2020, 151, 1673–1679; https://doi.org/10.1007/s00706-020-02701-7.Search in Google Scholar

22. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 361–367; https://doi.org/10.1515/znb-2021-0072.Search in Google Scholar

23. Zaremba, R. I., Kalychak, Ya. M., Rodewald, U. Ch., Pöttgen, R., Zaremba, V. I. Z. Naturforsch. 2006, 61b, 942–948; https://doi.org/10.1515/znb-2006-0803.Search in Google Scholar

24. Kalychak, Ya. M., Dmytrakh, O. V., Bodak, O. I., Ohryzlo, M. M. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1984, 33–35.Search in Google Scholar

25. Dwight, A. E., Kimball, C. W. J. Less-Common. Met. 1987, 127, 179–182; https://doi.org/10.1016/0022-5088(87)90376-6.Search in Google Scholar

26. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

27. Niepmann, D., Prots’, Yu. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329–337; https://doi.org/10.1006/jssc.2000.8789.Search in Google Scholar

28. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar

29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

31. Flack, H. D., Bernadinelli, G. Acta Crystallogr. A 1999, 55, 908–915; https://doi.org/10.1107/s0108767399004262.Search in Google Scholar PubMed

32. Flack, H. D., Bernadinelli, G. J. Appl. Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Search in Google Scholar

33. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central

34. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

35. Gulay, N., Tyvanchuk, Yu., Kalychak, Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 2017, 58, 63–68.Search in Google Scholar

36. Gulay, N., Tyvanchuk, Yu., Daszkiewicz, M., Ste’makhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289–295; https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar

37. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189; https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar

38. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar

39. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

40. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar

41. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

42. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

43. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar

44. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar

45. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar

46. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

48. Verbovytsky, Yu., Łątka, K. Chem. Met. Alloys 2008, 1, 250–253; https://doi.org/10.30970/cma1.0052.Search in Google Scholar

49. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182–185; https://doi.org/10.1016/s0925-8388(96)02402-4.Search in Google Scholar

50. Müller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley: Chichester, 2007.10.1002/9780470057278Search in Google Scholar

51. Felser, C., Hirohata, A., Eds. Heusler Alloys – Properties, Growth, Applications; Springer: Cham, 2016.10.1007/978-3-319-21449-8Search in Google Scholar

52. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar

Received: 2022-02-07
Accepted: 2022-02-25
Published Online: 2022-03-22
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0009/html
Scroll to top button