Abstract
Phase analytical studies in the Sc–Cu–In system led to samples of the solid solutions ScCu1–x–y
In1+x
and ScCu2–x
In which were studied by X-ray powder diffraction. At room temperature the compounds ScCu1–x–y
In1+x
crystallize with the ZrNiAl type, space group P
Funding source: Deutscher Akademischer Austauschdienst
Acknowledgements
We thank M. Sc. C. Paulsen for the EDX analyses of the single crystals.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The research stay of NG in Münster was supported by the Deutscher Akademischer Austauschdienst.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider Jr, K. A., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 34, chapter 218, 2005; pp. 1–133.10.1016/S0168-1273(04)34001-8Search in Google Scholar
2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021.Search in Google Scholar
3. Kalychak, Y. M. Visn. Lviv Univ. Ser. Khim. 1999, 38, 70–73.Search in Google Scholar
4. Kalychak, Y. M. Ukr. Chem. J. 1998, 64, 15–20.10.1108/07363769810202718Search in Google Scholar
5. Kalychak, Y. M. Izv. Akad. Nauk. SSSR, Met. 1998, 4, 110–118.Search in Google Scholar
6. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar
7. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar
8. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar
9. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Trill, H., Mosel, B. D., Piotrowski, H., Zumdick, M. F. Z. Naturforsch. 2001, 56b, 589–597; https://doi.org/10.1515/znb-2001-0705.Search in Google Scholar
10. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771–779; https://doi.org/10.1021/ic061691o.Search in Google Scholar
11. Vogt, C., Hoffmann, R.-D., Pöttgen, R. Solid State Sci. 2005, 7, 1003–1009; https://doi.org/10.1016/j.solidstatesciences.2005.04.004.Search in Google Scholar
12. Vogt, C., Hoffmann, R.-D., Rodewald, U. C., Eickerling, G., Presnitz, M., Eyert, V., Scherer, W., Pöttgen, R. Inorg. Chem. 2009, 48, 6436–6451; https://doi.org/10.1021/ic9002143.Search in Google Scholar
13. Eickerling, G., Hauf, C., Scheidt, E.-W., Reichert, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Romero, A. H., Porcher, F., André, G., Pöttgen, R., Scherer, W. Z. Anorg. Allg. Chem. 2013, 639, 1985–1995; https://doi.org/10.1002/zaac.201200517.Search in Google Scholar
14. Hulliger, F. J. Alloys Compd. 1996, 232, 160–164; https://doi.org/10.1016/0925-8388(95)01925-1.Search in Google Scholar
15. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Y. M., Seidel, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 81–91; https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar
16. Gulay, N. L., Hoffmann, R.-D., Zaremba, V. I., Kalychak, Y. M., Pöttgen, R. Z. Kristallogr. 2020, 235, 417–422; https://doi.org/10.1515/zkri-2020-0032.Search in Google Scholar
17. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Bruskov, V. A. Krystallografija 1991, 36, 1415–1418.Search in Google Scholar
18. Gulay, N. L., Tyvanchuk, Y. B., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. M. J. Alloys Compd. 2020, 815, 152660; https://doi.org/10.1016/j.jallcom.2019.152660.Search in Google Scholar
19. Gulay, N. L., Kösters, J., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 715–720; https://doi.org/10.1515/znb-2020-0048.Search in Google Scholar
20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 799–803; https://doi.org/10.1515/znb-2020-0104.Search in Google Scholar
21. Gulay, N. L., Kalychak, Y. M., Reimann, M. K., Paulsen, C., Kösters, J., Pöttgen, R. Monatsh. Chem. 2020, 151, 1673–1679; https://doi.org/10.1007/s00706-020-02701-7.Search in Google Scholar
22. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 361–367; https://doi.org/10.1515/znb-2021-0072.Search in Google Scholar
23. Zaremba, R. I., Kalychak, Ya. M., Rodewald, U. Ch., Pöttgen, R., Zaremba, V. I. Z. Naturforsch. 2006, 61b, 942–948; https://doi.org/10.1515/znb-2006-0803.Search in Google Scholar
24. Kalychak, Ya. M., Dmytrakh, O. V., Bodak, O. I., Ohryzlo, M. M. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1984, 33–35.Search in Google Scholar
25. Dwight, A. E., Kimball, C. W. J. Less-Common. Met. 1987, 127, 179–182; https://doi.org/10.1016/0022-5088(87)90376-6.Search in Google Scholar
26. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
27. Niepmann, D., Prots’, Yu. M., Pöttgen, R., Jeitschko, W. J. Solid State Chem. 2000, 154, 329–337; https://doi.org/10.1006/jssc.2000.8789.Search in Google Scholar
28. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar
29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar
31. Flack, H. D., Bernadinelli, G. Acta Crystallogr. A 1999, 55, 908–915; https://doi.org/10.1107/s0108767399004262.Search in Google Scholar PubMed
32. Flack, H. D., Bernadinelli, G. J. Appl. Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Search in Google Scholar
33. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central
34. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar
35. Gulay, N., Tyvanchuk, Yu., Kalychak, Y. Visn. Lviv. Derzh. Univ., Ser. Khim. 2017, 58, 63–68.Search in Google Scholar
36. Gulay, N., Tyvanchuk, Yu., Daszkiewicz, M., Ste’makhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289–295; https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar
37. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189; https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar
38. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar
39. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar
40. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar
41. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
42. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar
43. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar
44. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar
45. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar
46. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
48. Verbovytsky, Yu., Łątka, K. Chem. Met. Alloys 2008, 1, 250–253; https://doi.org/10.30970/cma1.0052.Search in Google Scholar
49. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182–185; https://doi.org/10.1016/s0925-8388(96)02402-4.Search in Google Scholar
50. Müller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley: Chichester, 2007.10.1002/9780470057278Search in Google Scholar
51. Felser, C., Hirohata, A., Eds. Heusler Alloys – Properties, Growth, Applications; Springer: Cham, 2016.10.1007/978-3-319-21449-8Search in Google Scholar
52. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide