Abstract
Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl−, Br−, I−) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Weller, M. T. J. Chem. Soc., Dalton Trans. 2000, 4227–4240; https://doi.org/10.1039/b003800h.Search in Google Scholar
2. Krivovichev, S. V. Microporous Mesoporous Mater. 2013, 171, 223–229; https://doi.org/10.1016/j.micromeso.2012.12.030.Search in Google Scholar
3. Thomson, T. Med. Phys. J. 1811, 26, 303–308; https://doi.org/10.1080/14786441108563287.Search in Google Scholar
4. Jaeger, F. M. Trans. Faraday Soc. 1929, 25, 320; https://doi.org/10.1039/tf9292500320.Search in Google Scholar
5. Pauling, L. Z. für Kristallogr. - Cryst. Mater. 1930, 74, 213–225; https://doi.org/10.1524/zkri.1930.74.1.213.Search in Google Scholar
6. Petersen, H., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2020, 235, 213–223; https://doi.org/10.1515/zkri-2020-0027.Search in Google Scholar
7. Robben, L., Abrahams, I., Fischer, M., Hull, S., Dove, M. T., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2019, 234, 219–228; https://doi.org/10.1515/zkri-2018-2122.Search in Google Scholar
8. Robben, L., Wolpmann, M., Bottke, P., Petersen, H., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2018, 256, 206–213; https://doi.org/10.1016/j.micromeso.2017.08.019.Search in Google Scholar
9. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Search in Google Scholar
10. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Search in Google Scholar
11. Šehović, M., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2015, 230, 263–269; https://doi.org/10.1515/zkri-2014-1815.Search in Google Scholar
12. Robben, L., Gesing, T. M. J. Solid State Chem. 2013, 207, 13–20; https://doi.org/10.1016/j.jssc.2013.08.022.Search in Google Scholar
13. Gesing, T. M., Schmidt, B. C., Murshed, M. M. Mater. Res. Bull. 2010, 45, 1618–1624; https://doi.org/10.1016/j.materresbull.2010.07.014.Search in Google Scholar
14. Murshed, M. M., Baer, A. J., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.1018.Search in Google Scholar
15. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.0015.Search in Google Scholar
16. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Search in Google Scholar
17. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar
18. Buhl, J.-C., Gesing, T. M., Höfs, T., Rüscher, C. H. J. Solid State Chem. 2006, 179, 3877–3882; https://doi.org/10.1016/j.jssc.2006.08.031.Search in Google Scholar
19. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Search in Google Scholar
20. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. N. Cryst. Struct. 2003, 218, 275.10.1524/ncrs.2003.218.3.275Search in Google Scholar
21. Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 14; https://doi.org/10.1515/ncrs-2000-0110.Search in Google Scholar
22. Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 52; https://doi.org/10.1524/zkri.2000.215.7.413.Search in Google Scholar
23. Gesing, T. M. Bildung, Strukturen, Eigenschaften und Phasenbeziehungen von Zinkarsenat-, Gallosilikat- und Alumosilikat-Sodalithen, Cancriniten und verwandten Verbindungen. Habilitation thesis, Gottfried Wilhelm Leibnitz Universität Hannover, Hannover, 2000.Search in Google Scholar
24. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Search in Google Scholar
25. Fischer, R. X., Baur, W. H. Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI; Springer-Verlag: Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Search in Google Scholar
26. Depmeier, W. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 185–191; https://doi.org/10.1107/s0108768184001956.Search in Google Scholar
27. Johnson, G. M., Mead, P. J., Weller, M. T. Phys. Chem. Chem. Phys. 1999, 1, 3709–3714; https://doi.org/10.1039/a903373d.Search in Google Scholar
28. Dove, M. T. Structure and Dynamics: An Atomic View of Materials; Oxford University Press: Oxford, 2002.10.1093/oso/9780198506775.001.0001Search in Google Scholar
29. Dove, M. T. Am. Mineral. 1997, 82, 213–244; https://doi.org/10.2138/am-1997-3-401.Search in Google Scholar
30. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2003, 218, 332–344.10.1524/zkri.218.5.332.20731Search in Google Scholar
31. Taylor, D. Mineral. Mag. J. Mineral Soc. 1968, 36, 761–769; https://doi.org/10.1180/minmag.1968.036.282.02.Search in Google Scholar
32. Henderson, C. M. B., Taylor, D. Phys. Chem. Miner. 1978, 2, 337–347; https://doi.org/10.1007/bf00307576.Search in Google Scholar
33. Taylor, D. Mineral. Mag. 1972, 38, 593–604; https://doi.org/10.1180/minmag.1972.038.297.08.Search in Google Scholar
34. Hassan, I., Grundy, H. D. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 6–13; https://doi.org/10.1107/s0108768184001683.Search in Google Scholar
35. Meier, W. M. V. Z. Kristallogr. 1969, 129, 411–423; https://doi.org/10.1524/zkri.1969.129.5-6.411.Search in Google Scholar
36. Dempsey, M. J., Taylor, D. Phys. Chem. Miner. 1980, 6, 197–208; https://doi.org/10.1007/bf00309856.Search in Google Scholar
37. McMullan, R. K., Ghose, S., Haga, N., Schomaker, V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1996, 52, 616–627; https://doi.org/10.1107/s0108768196004132.Search in Google Scholar
38. Hassan, I., Antao, S. M., Parise, J.B. Am. Mineral. 2004, 89, 359–364; https://doi.org/10.2138/am-2004-2-315.Search in Google Scholar
39. Murshed, M. M., Zhao, P., Huq, A., Gesing, T. M. Z. Anorg. Allg. Chem. 2018, 644, 253–259; https://doi.org/10.1002/zaac.201700330.Search in Google Scholar
40. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Mater. Res. Bull. 2014, 59, 170–178; https://doi.org/10.1016/j.materresbull.2014.07.005.Search in Google Scholar
41. Wong, A. K., Jones, R., Sparrow, J. G. J. Phys. Chem. Solid. 1987, 48, 749–753; https://doi.org/10.1016/0022-3697(87)90071-0.Search in Google Scholar
42. Vočadlo, L., Knight, K. S., Price, G. D., Wood, I. G. Phys. Chem. Miner. 2002, 29, 132–139.10.1007/s002690100202Search in Google Scholar
43. Oganov, A. R., Dorogokupets, P. I. J. Phys. Condens. Matter 2004, 16, 1351–1360; https://doi.org/10.1088/0953-8984/16/8/018.Search in Google Scholar
44. Senyshyn, A., Trots, D. M., Engel, J. M., Vasylechko, L., Ehrenberg, H., Hansen, T., Berkowski, M., Fuess, H. J. Phys. Condens. Matter 2009, 21, 145405; https://doi.org/10.1088/0953-8984/21/14/145405.Search in Google Scholar PubMed
45. Senyshyn, A., Boysen, H., Niewa, R., Banys, J., Kinka, M., Burak, Y., Adamiv, V., Izumi, F., Chumak, I., Fuess, H. J. Phys. D Appl. Phys. 2012, 45, 175305; https://doi.org/10.1088/0022-3727/45/17/175305.Search in Google Scholar
46. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. R., Murshed, M. M. Z. Kristallogr. 2013, 228, 532–543; https://doi.org/10.1524/zkri.2013.1640.Search in Google Scholar
47. Hoffmann, K., Murshed, M. M., Fischer, R. X., Schneider, H., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2014, 229, 699–708; https://doi.org/10.1515/zkri-2014-1785.Search in Google Scholar
48. Hoffmann, K., Hooper, T. J. N., Murshed, M. M., Dolotko, O., Révay, Z., Senyshyn, A., Schneider, H., Hanna, J. V., Gesing, T. M., Fischer, R. X. J. Solid State Chem. 2016, 243, 124–135; https://doi.org/10.1016/j.jssc.2016.08.018.Search in Google Scholar
49. Murshed, M. M., Zhao, P., Fischer, M., Huq, A., Alekseev, E. V., Gesing, T. M. Mater. Res. Bull. 2016, 84, 273–282; https://doi.org/10.1016/j.materresbull.2016.08.020.Search in Google Scholar
50. Murshed, M. M., Šehović, M., Fischer, M., Senyshyn, A., Schneider, H., Gesing, T. M. J. Am. Ceram. Soc. 2017, 100, 5259–5273; https://doi.org/10.1111/jace.15028.Search in Google Scholar
51. Kirsch, A., Murshed, M. M., Kirkham, M. J., Huq, A., Litterst, F. J., Gesing, T. M. J. Phys. Chem. C 2018, 122, 28280–28291; https://doi.org/10.1021/acs.jpcc.8b05740.Search in Google Scholar
52. Murshed, M. M., Petersen, H., Fischer, M., Curti, M., Mendive, C. B., Baran, V., Senyshyn, A., Gesing, T. M. J. Am. Ceram. Soc. 2019, 102, 2154–2164.Search in Google Scholar
53. Robben, L. Z. für Kristallogr. - Cryst. Mater. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Search in Google Scholar
54. Poltz, I. Synthese und Struktur-Eigenschaftsbeziehungen gallogermanatischer Sodalithe |NaaXb(H2O)n|[GaGeO4]6 und verwandter Verbindungen. Dissertation, Universität Bremen, Bremen, 2015.Search in Google Scholar
55. James, J. D., Spittle, J. A., Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, R1–R15; https://doi.org/10.1088/0957-0233/12/3/201.Search in Google Scholar
56. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1979, 35, 929–935; https://doi.org/10.1016/0584-8539(79)80016-1.Search in Google Scholar
57. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1977, 33, 283–290; https://doi.org/10.1016/0584-8539(77)80032-9.Search in Google Scholar
58. Johnson, G. M., Weller, M. T. Stud. Surf. Sci. Catal. 1997, 105, 269–275; https://doi.org/10.1016/s0167-2991(97)80565-4.Search in Google Scholar
59. Engelhardt, G., Felsche, J., Sieger, P. J. Am. Chem. Soc. 1992, 114, 1173–1182; https://doi.org/10.1021/ja00030a008.Search in Google Scholar
60. Wiebcke, M., Sieger, P., Felsche, J., Engelhardt, G., Behrens, P., Schefer, J. Z. Anorg. Allg. Chem. 1993, 619, 1321–1329; https://doi.org/10.1002/zaac.19936190728.Search in Google Scholar
61. Murshed, M. M., Gesing, T. M. Z. Anorg. Allg. Chem. 2009, 635, 2147–2149; https://doi.org/10.1002/zaac.200900061.Search in Google Scholar
62. Antao, S. M., Hassan, I. Can. Mineral. 2002, 40, 163–172; https://doi.org/10.2113/gscanmin.40.1.163.Search in Google Scholar
63. Schipper, D. J., Lathouwers, D. J., Doorn, C. Z. J. Am. Ceram. Soc. 1973, 56, 523–525; https://doi.org/10.1111/j.1151-2916.1973.tb12402.x.Search in Google Scholar
64. Sharp, Z. D., Helffrich, G. R., Bohlen, S. R., Essene, E. J. Geochem. Cosmochim. Acta 1989, 53, 1943–1954; https://doi.org/10.1016/0016-7037(89)90315-3.Search in Google Scholar
65. Shannon, R. D., Prewitt, C. T. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Chem. 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar
66. Shannon, R. D. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
67. Fons, P., Kolobov, A. V., Krbal, M., Tominaga, J., Andrikopoulos, K. S., Yannopoulos, S. N., Voyiatzis, G. A., Uruga, T. Phys. Rev. B 2010, 82; https://doi.org/10.1103/physrevb.82.155209.Search in Google Scholar
68. Müser, M. H., Binder, K. Phys. Chem. Miner. 2001, 28, 746–755.10.1007/s002690100203Search in Google Scholar
69. Brown, I. D., Altermatt, D. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar
70. Brown, I. D. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Search in Google Scholar PubMed PubMed Central
71. Brese, N. E., O’Keeffe, M. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar
72. Lindemann, F. A. Phys. Z. 1910, 11, 609–612.10.3109/07357909309011680Search in Google Scholar
73. Shelimova, L. E., Plachkova, S. K. Phys. Status Solidi 1987, 104, 679–685; https://doi.org/10.1002/pssa.2211040219.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0004).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Articles in the same Issue
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide