Abstract
Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl−, Br−, I−) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Weller, M. T. J. Chem. Soc., Dalton Trans. 2000, 4227–4240; https://doi.org/10.1039/b003800h.Suche in Google Scholar
2. Krivovichev, S. V. Microporous Mesoporous Mater. 2013, 171, 223–229; https://doi.org/10.1016/j.micromeso.2012.12.030.Suche in Google Scholar
3. Thomson, T. Med. Phys. J. 1811, 26, 303–308; https://doi.org/10.1080/14786441108563287.Suche in Google Scholar
4. Jaeger, F. M. Trans. Faraday Soc. 1929, 25, 320; https://doi.org/10.1039/tf9292500320.Suche in Google Scholar
5. Pauling, L. Z. für Kristallogr. - Cryst. Mater. 1930, 74, 213–225; https://doi.org/10.1524/zkri.1930.74.1.213.Suche in Google Scholar
6. Petersen, H., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2020, 235, 213–223; https://doi.org/10.1515/zkri-2020-0027.Suche in Google Scholar
7. Robben, L., Abrahams, I., Fischer, M., Hull, S., Dove, M. T., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2019, 234, 219–228; https://doi.org/10.1515/zkri-2018-2122.Suche in Google Scholar
8. Robben, L., Wolpmann, M., Bottke, P., Petersen, H., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2018, 256, 206–213; https://doi.org/10.1016/j.micromeso.2017.08.019.Suche in Google Scholar
9. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Suche in Google Scholar
10. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Suche in Google Scholar
11. Šehović, M., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2015, 230, 263–269; https://doi.org/10.1515/zkri-2014-1815.Suche in Google Scholar
12. Robben, L., Gesing, T. M. J. Solid State Chem. 2013, 207, 13–20; https://doi.org/10.1016/j.jssc.2013.08.022.Suche in Google Scholar
13. Gesing, T. M., Schmidt, B. C., Murshed, M. M. Mater. Res. Bull. 2010, 45, 1618–1624; https://doi.org/10.1016/j.materresbull.2010.07.014.Suche in Google Scholar
14. Murshed, M. M., Baer, A. J., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.1018.Suche in Google Scholar
15. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.0015.Suche in Google Scholar
16. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Suche in Google Scholar
17. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Suche in Google Scholar
18. Buhl, J.-C., Gesing, T. M., Höfs, T., Rüscher, C. H. J. Solid State Chem. 2006, 179, 3877–3882; https://doi.org/10.1016/j.jssc.2006.08.031.Suche in Google Scholar
19. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Suche in Google Scholar
20. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. N. Cryst. Struct. 2003, 218, 275.10.1524/ncrs.2003.218.3.275Suche in Google Scholar
21. Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 14; https://doi.org/10.1515/ncrs-2000-0110.Suche in Google Scholar
22. Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 52; https://doi.org/10.1524/zkri.2000.215.7.413.Suche in Google Scholar
23. Gesing, T. M. Bildung, Strukturen, Eigenschaften und Phasenbeziehungen von Zinkarsenat-, Gallosilikat- und Alumosilikat-Sodalithen, Cancriniten und verwandten Verbindungen. Habilitation thesis, Gottfried Wilhelm Leibnitz Universität Hannover, Hannover, 2000.Suche in Google Scholar
24. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Suche in Google Scholar
25. Fischer, R. X., Baur, W. H. Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI; Springer-Verlag: Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Suche in Google Scholar
26. Depmeier, W. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 185–191; https://doi.org/10.1107/s0108768184001956.Suche in Google Scholar
27. Johnson, G. M., Mead, P. J., Weller, M. T. Phys. Chem. Chem. Phys. 1999, 1, 3709–3714; https://doi.org/10.1039/a903373d.Suche in Google Scholar
28. Dove, M. T. Structure and Dynamics: An Atomic View of Materials; Oxford University Press: Oxford, 2002.10.1093/oso/9780198506775.001.0001Suche in Google Scholar
29. Dove, M. T. Am. Mineral. 1997, 82, 213–244; https://doi.org/10.2138/am-1997-3-401.Suche in Google Scholar
30. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2003, 218, 332–344.10.1524/zkri.218.5.332.20731Suche in Google Scholar
31. Taylor, D. Mineral. Mag. J. Mineral Soc. 1968, 36, 761–769; https://doi.org/10.1180/minmag.1968.036.282.02.Suche in Google Scholar
32. Henderson, C. M. B., Taylor, D. Phys. Chem. Miner. 1978, 2, 337–347; https://doi.org/10.1007/bf00307576.Suche in Google Scholar
33. Taylor, D. Mineral. Mag. 1972, 38, 593–604; https://doi.org/10.1180/minmag.1972.038.297.08.Suche in Google Scholar
34. Hassan, I., Grundy, H. D. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 6–13; https://doi.org/10.1107/s0108768184001683.Suche in Google Scholar
35. Meier, W. M. V. Z. Kristallogr. 1969, 129, 411–423; https://doi.org/10.1524/zkri.1969.129.5-6.411.Suche in Google Scholar
36. Dempsey, M. J., Taylor, D. Phys. Chem. Miner. 1980, 6, 197–208; https://doi.org/10.1007/bf00309856.Suche in Google Scholar
37. McMullan, R. K., Ghose, S., Haga, N., Schomaker, V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1996, 52, 616–627; https://doi.org/10.1107/s0108768196004132.Suche in Google Scholar
38. Hassan, I., Antao, S. M., Parise, J.B. Am. Mineral. 2004, 89, 359–364; https://doi.org/10.2138/am-2004-2-315.Suche in Google Scholar
39. Murshed, M. M., Zhao, P., Huq, A., Gesing, T. M. Z. Anorg. Allg. Chem. 2018, 644, 253–259; https://doi.org/10.1002/zaac.201700330.Suche in Google Scholar
40. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Mater. Res. Bull. 2014, 59, 170–178; https://doi.org/10.1016/j.materresbull.2014.07.005.Suche in Google Scholar
41. Wong, A. K., Jones, R., Sparrow, J. G. J. Phys. Chem. Solid. 1987, 48, 749–753; https://doi.org/10.1016/0022-3697(87)90071-0.Suche in Google Scholar
42. Vočadlo, L., Knight, K. S., Price, G. D., Wood, I. G. Phys. Chem. Miner. 2002, 29, 132–139.10.1007/s002690100202Suche in Google Scholar
43. Oganov, A. R., Dorogokupets, P. I. J. Phys. Condens. Matter 2004, 16, 1351–1360; https://doi.org/10.1088/0953-8984/16/8/018.Suche in Google Scholar
44. Senyshyn, A., Trots, D. M., Engel, J. M., Vasylechko, L., Ehrenberg, H., Hansen, T., Berkowski, M., Fuess, H. J. Phys. Condens. Matter 2009, 21, 145405; https://doi.org/10.1088/0953-8984/21/14/145405.Suche in Google Scholar PubMed
45. Senyshyn, A., Boysen, H., Niewa, R., Banys, J., Kinka, M., Burak, Y., Adamiv, V., Izumi, F., Chumak, I., Fuess, H. J. Phys. D Appl. Phys. 2012, 45, 175305; https://doi.org/10.1088/0022-3727/45/17/175305.Suche in Google Scholar
46. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. R., Murshed, M. M. Z. Kristallogr. 2013, 228, 532–543; https://doi.org/10.1524/zkri.2013.1640.Suche in Google Scholar
47. Hoffmann, K., Murshed, M. M., Fischer, R. X., Schneider, H., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2014, 229, 699–708; https://doi.org/10.1515/zkri-2014-1785.Suche in Google Scholar
48. Hoffmann, K., Hooper, T. J. N., Murshed, M. M., Dolotko, O., Révay, Z., Senyshyn, A., Schneider, H., Hanna, J. V., Gesing, T. M., Fischer, R. X. J. Solid State Chem. 2016, 243, 124–135; https://doi.org/10.1016/j.jssc.2016.08.018.Suche in Google Scholar
49. Murshed, M. M., Zhao, P., Fischer, M., Huq, A., Alekseev, E. V., Gesing, T. M. Mater. Res. Bull. 2016, 84, 273–282; https://doi.org/10.1016/j.materresbull.2016.08.020.Suche in Google Scholar
50. Murshed, M. M., Šehović, M., Fischer, M., Senyshyn, A., Schneider, H., Gesing, T. M. J. Am. Ceram. Soc. 2017, 100, 5259–5273; https://doi.org/10.1111/jace.15028.Suche in Google Scholar
51. Kirsch, A., Murshed, M. M., Kirkham, M. J., Huq, A., Litterst, F. J., Gesing, T. M. J. Phys. Chem. C 2018, 122, 28280–28291; https://doi.org/10.1021/acs.jpcc.8b05740.Suche in Google Scholar
52. Murshed, M. M., Petersen, H., Fischer, M., Curti, M., Mendive, C. B., Baran, V., Senyshyn, A., Gesing, T. M. J. Am. Ceram. Soc. 2019, 102, 2154–2164.Suche in Google Scholar
53. Robben, L. Z. für Kristallogr. - Cryst. Mater. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Suche in Google Scholar
54. Poltz, I. Synthese und Struktur-Eigenschaftsbeziehungen gallogermanatischer Sodalithe |NaaXb(H2O)n|[GaGeO4]6 und verwandter Verbindungen. Dissertation, Universität Bremen, Bremen, 2015.Suche in Google Scholar
55. James, J. D., Spittle, J. A., Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, R1–R15; https://doi.org/10.1088/0957-0233/12/3/201.Suche in Google Scholar
56. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1979, 35, 929–935; https://doi.org/10.1016/0584-8539(79)80016-1.Suche in Google Scholar
57. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1977, 33, 283–290; https://doi.org/10.1016/0584-8539(77)80032-9.Suche in Google Scholar
58. Johnson, G. M., Weller, M. T. Stud. Surf. Sci. Catal. 1997, 105, 269–275; https://doi.org/10.1016/s0167-2991(97)80565-4.Suche in Google Scholar
59. Engelhardt, G., Felsche, J., Sieger, P. J. Am. Chem. Soc. 1992, 114, 1173–1182; https://doi.org/10.1021/ja00030a008.Suche in Google Scholar
60. Wiebcke, M., Sieger, P., Felsche, J., Engelhardt, G., Behrens, P., Schefer, J. Z. Anorg. Allg. Chem. 1993, 619, 1321–1329; https://doi.org/10.1002/zaac.19936190728.Suche in Google Scholar
61. Murshed, M. M., Gesing, T. M. Z. Anorg. Allg. Chem. 2009, 635, 2147–2149; https://doi.org/10.1002/zaac.200900061.Suche in Google Scholar
62. Antao, S. M., Hassan, I. Can. Mineral. 2002, 40, 163–172; https://doi.org/10.2113/gscanmin.40.1.163.Suche in Google Scholar
63. Schipper, D. J., Lathouwers, D. J., Doorn, C. Z. J. Am. Ceram. Soc. 1973, 56, 523–525; https://doi.org/10.1111/j.1151-2916.1973.tb12402.x.Suche in Google Scholar
64. Sharp, Z. D., Helffrich, G. R., Bohlen, S. R., Essene, E. J. Geochem. Cosmochim. Acta 1989, 53, 1943–1954; https://doi.org/10.1016/0016-7037(89)90315-3.Suche in Google Scholar
65. Shannon, R. D., Prewitt, C. T. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Chem. 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Suche in Google Scholar
66. Shannon, R. D. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
67. Fons, P., Kolobov, A. V., Krbal, M., Tominaga, J., Andrikopoulos, K. S., Yannopoulos, S. N., Voyiatzis, G. A., Uruga, T. Phys. Rev. B 2010, 82; https://doi.org/10.1103/physrevb.82.155209.Suche in Google Scholar
68. Müser, M. H., Binder, K. Phys. Chem. Miner. 2001, 28, 746–755.10.1007/s002690100203Suche in Google Scholar
69. Brown, I. D., Altermatt, D. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Suche in Google Scholar
70. Brown, I. D. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Suche in Google Scholar PubMed PubMed Central
71. Brese, N. E., O’Keeffe, M. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/s0108768190011041.Suche in Google Scholar
72. Lindemann, F. A. Phys. Z. 1910, 11, 609–612.10.3109/07357909309011680Suche in Google Scholar
73. Shelimova, L. E., Plachkova, S. K. Phys. Status Solidi 1987, 104, 679–685; https://doi.org/10.1002/pssa.2211040219.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0004).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Micro Review
- Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
- Inorganic Crystal Structures (Original Paper)
- The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain
- Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
- RE3Rh2Sn4 (RE = Y, Gd–Tm, Lu) – first stannides with Lu3Co2In4 type structure
- Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures
- Syntheses, crystallographic characterization, and structural relations of Rb[SCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Unique supramolecular assembly of a synthetic achiral α, γ-hybrid tripeptide