Home Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
Article
Licensed
Unlicensed Requires Authentication

Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion

  • Marius Wolpmann , Lars Robben EMAIL logo and Thorsten M. Gesing
Published/Copyright: February 7, 2022

Abstract

Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl, Br, I) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.


Corresponding author: Lars Robben, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliotheksstraße 1, D-28359 Bremen, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Weller, M. T. J. Chem. Soc., Dalton Trans. 2000, 4227–4240; https://doi.org/10.1039/b003800h.Search in Google Scholar

2. Krivovichev, S. V. Microporous Mesoporous Mater. 2013, 171, 223–229; https://doi.org/10.1016/j.micromeso.2012.12.030.Search in Google Scholar

3. Thomson, T. Med. Phys. J. 1811, 26, 303–308; https://doi.org/10.1080/14786441108563287.Search in Google Scholar

4. Jaeger, F. M. Trans. Faraday Soc. 1929, 25, 320; https://doi.org/10.1039/tf9292500320.Search in Google Scholar

5. Pauling, L. Z. für Kristallogr. - Cryst. Mater. 1930, 74, 213–225; https://doi.org/10.1524/zkri.1930.74.1.213.Search in Google Scholar

6. Petersen, H., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2020, 235, 213–223; https://doi.org/10.1515/zkri-2020-0027.Search in Google Scholar

7. Robben, L., Abrahams, I., Fischer, M., Hull, S., Dove, M. T., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2019, 234, 219–228; https://doi.org/10.1515/zkri-2018-2122.Search in Google Scholar

8. Robben, L., Wolpmann, M., Bottke, P., Petersen, H., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2018, 256, 206–213; https://doi.org/10.1016/j.micromeso.2017.08.019.Search in Google Scholar

9. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Search in Google Scholar

10. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Search in Google Scholar

11. Šehović, M., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2015, 230, 263–269; https://doi.org/10.1515/zkri-2014-1815.Search in Google Scholar

12. Robben, L., Gesing, T. M. J. Solid State Chem. 2013, 207, 13–20; https://doi.org/10.1016/j.jssc.2013.08.022.Search in Google Scholar

13. Gesing, T. M., Schmidt, B. C., Murshed, M. M. Mater. Res. Bull. 2010, 45, 1618–1624; https://doi.org/10.1016/j.materresbull.2010.07.014.Search in Google Scholar

14. Murshed, M. M., Baer, A. J., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.1018.Search in Google Scholar

15. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.0015.Search in Google Scholar

16. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Search in Google Scholar

17. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Search in Google Scholar

18. Buhl, J.-C., Gesing, T. M., Höfs, T., Rüscher, C. H. J. Solid State Chem. 2006, 179, 3877–3882; https://doi.org/10.1016/j.jssc.2006.08.031.Search in Google Scholar

19. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Search in Google Scholar

20. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. N. Cryst. Struct. 2003, 218, 275.10.1524/ncrs.2003.218.3.275Search in Google Scholar

21. Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 14; https://doi.org/10.1515/ncrs-2000-0110.Search in Google Scholar

22. Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 52; https://doi.org/10.1524/zkri.2000.215.7.413.Search in Google Scholar

23. Gesing, T. M. Bildung, Strukturen, Eigenschaften und Phasenbeziehungen von Zinkarsenat-, Gallosilikat- und Alumosilikat-Sodalithen, Cancriniten und verwandten Verbindungen. Habilitation thesis, Gottfried Wilhelm Leibnitz Universität Hannover, Hannover, 2000.Search in Google Scholar

24. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Search in Google Scholar

25. Fischer, R. X., Baur, W. H. Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI; Springer-Verlag: Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Search in Google Scholar

26. Depmeier, W. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 185–191; https://doi.org/10.1107/s0108768184001956.Search in Google Scholar

27. Johnson, G. M., Mead, P. J., Weller, M. T. Phys. Chem. Chem. Phys. 1999, 1, 3709–3714; https://doi.org/10.1039/a903373d.Search in Google Scholar

28. Dove, M. T. Structure and Dynamics: An Atomic View of Materials; Oxford University Press: Oxford, 2002.10.1093/oso/9780198506775.001.0001Search in Google Scholar

29. Dove, M. T. Am. Mineral. 1997, 82, 213–244; https://doi.org/10.2138/am-1997-3-401.Search in Google Scholar

30. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2003, 218, 332–344.10.1524/zkri.218.5.332.20731Search in Google Scholar

31. Taylor, D. Mineral. Mag. J. Mineral Soc. 1968, 36, 761–769; https://doi.org/10.1180/minmag.1968.036.282.02.Search in Google Scholar

32. Henderson, C. M. B., Taylor, D. Phys. Chem. Miner. 1978, 2, 337–347; https://doi.org/10.1007/bf00307576.Search in Google Scholar

33. Taylor, D. Mineral. Mag. 1972, 38, 593–604; https://doi.org/10.1180/minmag.1972.038.297.08.Search in Google Scholar

34. Hassan, I., Grundy, H. D. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 6–13; https://doi.org/10.1107/s0108768184001683.Search in Google Scholar

35. Meier, W. M. V. Z. Kristallogr. 1969, 129, 411–423; https://doi.org/10.1524/zkri.1969.129.5-6.411.Search in Google Scholar

36. Dempsey, M. J., Taylor, D. Phys. Chem. Miner. 1980, 6, 197–208; https://doi.org/10.1007/bf00309856.Search in Google Scholar

37. McMullan, R. K., Ghose, S., Haga, N., Schomaker, V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1996, 52, 616–627; https://doi.org/10.1107/s0108768196004132.Search in Google Scholar

38. Hassan, I., Antao, S. M., Parise, J.B. Am. Mineral. 2004, 89, 359–364; https://doi.org/10.2138/am-2004-2-315.Search in Google Scholar

39. Murshed, M. M., Zhao, P., Huq, A., Gesing, T. M. Z. Anorg. Allg. Chem. 2018, 644, 253–259; https://doi.org/10.1002/zaac.201700330.Search in Google Scholar

40. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Mater. Res. Bull. 2014, 59, 170–178; https://doi.org/10.1016/j.materresbull.2014.07.005.Search in Google Scholar

41. Wong, A. K., Jones, R., Sparrow, J. G. J. Phys. Chem. Solid. 1987, 48, 749–753; https://doi.org/10.1016/0022-3697(87)90071-0.Search in Google Scholar

42. Vočadlo, L., Knight, K. S., Price, G. D., Wood, I. G. Phys. Chem. Miner. 2002, 29, 132–139.10.1007/s002690100202Search in Google Scholar

43. Oganov, A. R., Dorogokupets, P. I. J. Phys. Condens. Matter 2004, 16, 1351–1360; https://doi.org/10.1088/0953-8984/16/8/018.Search in Google Scholar

44. Senyshyn, A., Trots, D. M., Engel, J. M., Vasylechko, L., Ehrenberg, H., Hansen, T., Berkowski, M., Fuess, H. J. Phys. Condens. Matter 2009, 21, 145405; https://doi.org/10.1088/0953-8984/21/14/145405.Search in Google Scholar PubMed

45. Senyshyn, A., Boysen, H., Niewa, R., Banys, J., Kinka, M., Burak, Y., Adamiv, V., Izumi, F., Chumak, I., Fuess, H. J. Phys. D Appl. Phys. 2012, 45, 175305; https://doi.org/10.1088/0022-3727/45/17/175305.Search in Google Scholar

46. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. R., Murshed, M. M. Z. Kristallogr. 2013, 228, 532–543; https://doi.org/10.1524/zkri.2013.1640.Search in Google Scholar

47. Hoffmann, K., Murshed, M. M., Fischer, R. X., Schneider, H., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2014, 229, 699–708; https://doi.org/10.1515/zkri-2014-1785.Search in Google Scholar

48. Hoffmann, K., Hooper, T. J. N., Murshed, M. M., Dolotko, O., Révay, Z., Senyshyn, A., Schneider, H., Hanna, J. V., Gesing, T. M., Fischer, R. X. J. Solid State Chem. 2016, 243, 124–135; https://doi.org/10.1016/j.jssc.2016.08.018.Search in Google Scholar

49. Murshed, M. M., Zhao, P., Fischer, M., Huq, A., Alekseev, E. V., Gesing, T. M. Mater. Res. Bull. 2016, 84, 273–282; https://doi.org/10.1016/j.materresbull.2016.08.020.Search in Google Scholar

50. Murshed, M. M., Šehović, M., Fischer, M., Senyshyn, A., Schneider, H., Gesing, T. M. J. Am. Ceram. Soc. 2017, 100, 5259–5273; https://doi.org/10.1111/jace.15028.Search in Google Scholar

51. Kirsch, A., Murshed, M. M., Kirkham, M. J., Huq, A., Litterst, F. J., Gesing, T. M. J. Phys. Chem. C 2018, 122, 28280–28291; https://doi.org/10.1021/acs.jpcc.8b05740.Search in Google Scholar

52. Murshed, M. M., Petersen, H., Fischer, M., Curti, M., Mendive, C. B., Baran, V., Senyshyn, A., Gesing, T. M. J. Am. Ceram. Soc. 2019, 102, 2154–2164.Search in Google Scholar

53. Robben, L. Z. für Kristallogr. - Cryst. Mater. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Search in Google Scholar

54. Poltz, I. Synthese und Struktur-Eigenschaftsbeziehungen gallogermanatischer Sodalithe |NaaXb(H2O)n|[GaGeO4]6 und verwandter Verbindungen. Dissertation, Universität Bremen, Bremen, 2015.Search in Google Scholar

55. James, J. D., Spittle, J. A., Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, R1–R15; https://doi.org/10.1088/0957-0233/12/3/201.Search in Google Scholar

56. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1979, 35, 929–935; https://doi.org/10.1016/0584-8539(79)80016-1.Search in Google Scholar

57. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1977, 33, 283–290; https://doi.org/10.1016/0584-8539(77)80032-9.Search in Google Scholar

58. Johnson, G. M., Weller, M. T. Stud. Surf. Sci. Catal. 1997, 105, 269–275; https://doi.org/10.1016/s0167-2991(97)80565-4.Search in Google Scholar

59. Engelhardt, G., Felsche, J., Sieger, P. J. Am. Chem. Soc. 1992, 114, 1173–1182; https://doi.org/10.1021/ja00030a008.Search in Google Scholar

60. Wiebcke, M., Sieger, P., Felsche, J., Engelhardt, G., Behrens, P., Schefer, J. Z. Anorg. Allg. Chem. 1993, 619, 1321–1329; https://doi.org/10.1002/zaac.19936190728.Search in Google Scholar

61. Murshed, M. M., Gesing, T. M. Z. Anorg. Allg. Chem. 2009, 635, 2147–2149; https://doi.org/10.1002/zaac.200900061.Search in Google Scholar

62. Antao, S. M., Hassan, I. Can. Mineral. 2002, 40, 163–172; https://doi.org/10.2113/gscanmin.40.1.163.Search in Google Scholar

63. Schipper, D. J., Lathouwers, D. J., Doorn, C. Z. J. Am. Ceram. Soc. 1973, 56, 523–525; https://doi.org/10.1111/j.1151-2916.1973.tb12402.x.Search in Google Scholar

64. Sharp, Z. D., Helffrich, G. R., Bohlen, S. R., Essene, E. J. Geochem. Cosmochim. Acta 1989, 53, 1943–1954; https://doi.org/10.1016/0016-7037(89)90315-3.Search in Google Scholar

65. Shannon, R. D., Prewitt, C. T. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Chem. 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Search in Google Scholar

66. Shannon, R. D. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

67. Fons, P., Kolobov, A. V., Krbal, M., Tominaga, J., Andrikopoulos, K. S., Yannopoulos, S. N., Voyiatzis, G. A., Uruga, T. Phys. Rev. B 2010, 82; https://doi.org/10.1103/physrevb.82.155209.Search in Google Scholar

68. Müser, M. H., Binder, K. Phys. Chem. Miner. 2001, 28, 746–755.10.1007/s002690100203Search in Google Scholar

69. Brown, I. D., Altermatt, D. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Search in Google Scholar

70. Brown, I. D. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Search in Google Scholar PubMed PubMed Central

71. Brese, N. E., O’Keeffe, M. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/s0108768190011041.Search in Google Scholar

72. Lindemann, F. A. Phys. Z. 1910, 11, 609–612.10.3109/07357909309011680Search in Google Scholar

73. Shelimova, L. E., Plachkova, S. K. Phys. Status Solidi 1987, 104, 679–685; https://doi.org/10.1002/pssa.2211040219.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0004).


Received: 2022-01-18
Accepted: 2022-01-19
Published Online: 2022-02-07
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0004/html
Scroll to top button