Startseite Naturwissenschaften Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Halide-sodalites: thermal expansion, decomposition and the Lindemann criterion

  • Marius Wolpmann , Lars Robben EMAIL logo und Thorsten M. Gesing
Veröffentlicht/Copyright: 7. Februar 2022

Abstract

Twelve cubic sodalites |Na8X2|[T1T2O4]6 (T1 = Al3+, Ga3+; T2 = Si4+, Ge4+; X = Cl, Br, I) were examined using high-temperature (HT) X-ray diffraction experiments and TGA-DSC measurements. Temperature-dependent structure data was obtained by Rietveld refinements. Decomposition temperatures were determined using TGA-DSC data for all compounds. The temperature-dependent volume expansion was used to determine Debye and Einstein temperatures using DEA fits. Distinct relations between thermal expansion, bond lengths and the decomposition temperature could not be found. Determination of Lindemann constants of all compounds enables a classification of the sodalites in three groups.


Corresponding author: Lars Robben, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliotheksstraße 1, D-28359 Bremen, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Weller, M. T. J. Chem. Soc., Dalton Trans. 2000, 4227–4240; https://doi.org/10.1039/b003800h.Suche in Google Scholar

2. Krivovichev, S. V. Microporous Mesoporous Mater. 2013, 171, 223–229; https://doi.org/10.1016/j.micromeso.2012.12.030.Suche in Google Scholar

3. Thomson, T. Med. Phys. J. 1811, 26, 303–308; https://doi.org/10.1080/14786441108563287.Suche in Google Scholar

4. Jaeger, F. M. Trans. Faraday Soc. 1929, 25, 320; https://doi.org/10.1039/tf9292500320.Suche in Google Scholar

5. Pauling, L. Z. für Kristallogr. - Cryst. Mater. 1930, 74, 213–225; https://doi.org/10.1524/zkri.1930.74.1.213.Suche in Google Scholar

6. Petersen, H., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2020, 235, 213–223; https://doi.org/10.1515/zkri-2020-0027.Suche in Google Scholar

7. Robben, L., Abrahams, I., Fischer, M., Hull, S., Dove, M. T., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2019, 234, 219–228; https://doi.org/10.1515/zkri-2018-2122.Suche in Google Scholar

8. Robben, L., Wolpmann, M., Bottke, P., Petersen, H., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2018, 256, 206–213; https://doi.org/10.1016/j.micromeso.2017.08.019.Suche in Google Scholar

9. Petersen, H., Robben, L., Šehović, M., Gesing, T. M. Microporous Mesoporous Mater. 2017, 242, 144–151; https://doi.org/10.1016/j.micromeso.2017.01.019.Suche in Google Scholar

10. Poltz, I., Robben, L., Buhl, J.-C., Gesing, T. M. Microporous Mesoporous Mater. 2015, 203, 100–105; https://doi.org/10.1016/j.micromeso.2014.10.007.Suche in Google Scholar

11. Šehović, M., Robben, L., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2015, 230, 263–269; https://doi.org/10.1515/zkri-2014-1815.Suche in Google Scholar

12. Robben, L., Gesing, T. M. J. Solid State Chem. 2013, 207, 13–20; https://doi.org/10.1016/j.jssc.2013.08.022.Suche in Google Scholar

13. Gesing, T. M., Schmidt, B. C., Murshed, M. M. Mater. Res. Bull. 2010, 45, 1618–1624; https://doi.org/10.1016/j.materresbull.2010.07.014.Suche in Google Scholar

14. Murshed, M. M., Baer, A. J., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.1018.Suche in Google Scholar

15. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2008, 223, 213; https://doi.org/10.1524/zkri.2008.0015.Suche in Google Scholar

16. Gesing, T. M. Z. Kristallogr. 2007, 222, 289–296; https://doi.org/10.1524/zkri.2007.222.6.289.Suche in Google Scholar

17. Murshed, M. M., Gesing, T. M. Z. Kristallogr. 2007, 222, 341–349; https://doi.org/10.1524/zkri.2007.222.7.341.Suche in Google Scholar

18. Buhl, J.-C., Gesing, T. M., Höfs, T., Rüscher, C. H. J. Solid State Chem. 2006, 179, 3877–3882; https://doi.org/10.1016/j.jssc.2006.08.031.Suche in Google Scholar

19. Buhl, J.-C., Gesing, T. M., Kerkamm, I., Gurris, C. Microporous Mesoporous Mater. 2003, 65, 145–153; https://doi.org/10.1016/j.micromeso.2003.07.004.Suche in Google Scholar

20. Gesing, T. M., Buhl, J.-C. Z. Kristallogr. N. Cryst. Struct. 2003, 218, 275.10.1524/ncrs.2003.218.3.275Suche in Google Scholar

21. Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 14; https://doi.org/10.1515/ncrs-2000-0110.Suche in Google Scholar

22. Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2000, 215, 52; https://doi.org/10.1524/zkri.2000.215.7.413.Suche in Google Scholar

23. Gesing, T. M. Bildung, Strukturen, Eigenschaften und Phasenbeziehungen von Zinkarsenat-, Gallosilikat- und Alumosilikat-Sodalithen, Cancriniten und verwandten Verbindungen. Habilitation thesis, Gottfried Wilhelm Leibnitz Universität Hannover, Hannover, 2000.Suche in Google Scholar

24. Fischer, R. X., Baur, W. H. Z. Kristallogr. 2009, 224, 185–197; https://doi.org/10.1524/zkri.2009.1147.Suche in Google Scholar

25. Fischer, R. X., Baur, W. H. Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI; Springer-Verlag: Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Suche in Google Scholar

26. Depmeier, W. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 185–191; https://doi.org/10.1107/s0108768184001956.Suche in Google Scholar

27. Johnson, G. M., Mead, P. J., Weller, M. T. Phys. Chem. Chem. Phys. 1999, 1, 3709–3714; https://doi.org/10.1039/a903373d.Suche in Google Scholar

28. Dove, M. T. Structure and Dynamics: An Atomic View of Materials; Oxford University Press: Oxford, 2002.10.1093/oso/9780198506775.001.0001Suche in Google Scholar

29. Dove, M. T. Am. Mineral. 1997, 82, 213–244; https://doi.org/10.2138/am-1997-3-401.Suche in Google Scholar

30. Rüscher, C. H., Gesing, T. M., Buhl, J.-C. Z. für Kristallogr. - Cryst. Mater. 2003, 218, 332–344.10.1524/zkri.218.5.332.20731Suche in Google Scholar

31. Taylor, D. Mineral. Mag. J. Mineral Soc. 1968, 36, 761–769; https://doi.org/10.1180/minmag.1968.036.282.02.Suche in Google Scholar

32. Henderson, C. M. B., Taylor, D. Phys. Chem. Miner. 1978, 2, 337–347; https://doi.org/10.1007/bf00307576.Suche in Google Scholar

33. Taylor, D. Mineral. Mag. 1972, 38, 593–604; https://doi.org/10.1180/minmag.1972.038.297.08.Suche in Google Scholar

34. Hassan, I., Grundy, H. D. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1984, 40, 6–13; https://doi.org/10.1107/s0108768184001683.Suche in Google Scholar

35. Meier, W. M. V. Z. Kristallogr. 1969, 129, 411–423; https://doi.org/10.1524/zkri.1969.129.5-6.411.Suche in Google Scholar

36. Dempsey, M. J., Taylor, D. Phys. Chem. Miner. 1980, 6, 197–208; https://doi.org/10.1007/bf00309856.Suche in Google Scholar

37. McMullan, R. K., Ghose, S., Haga, N., Schomaker, V. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 1996, 52, 616–627; https://doi.org/10.1107/s0108768196004132.Suche in Google Scholar

38. Hassan, I., Antao, S. M., Parise, J.B. Am. Mineral. 2004, 89, 359–364; https://doi.org/10.2138/am-2004-2-315.Suche in Google Scholar

39. Murshed, M. M., Zhao, P., Huq, A., Gesing, T. M. Z. Anorg. Allg. Chem. 2018, 644, 253–259; https://doi.org/10.1002/zaac.201700330.Suche in Google Scholar

40. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Mater. Res. Bull. 2014, 59, 170–178; https://doi.org/10.1016/j.materresbull.2014.07.005.Suche in Google Scholar

41. Wong, A. K., Jones, R., Sparrow, J. G. J. Phys. Chem. Solid. 1987, 48, 749–753; https://doi.org/10.1016/0022-3697(87)90071-0.Suche in Google Scholar

42. Vočadlo, L., Knight, K. S., Price, G. D., Wood, I. G. Phys. Chem. Miner. 2002, 29, 132–139.10.1007/s002690100202Suche in Google Scholar

43. Oganov, A. R., Dorogokupets, P. I. J. Phys. Condens. Matter 2004, 16, 1351–1360; https://doi.org/10.1088/0953-8984/16/8/018.Suche in Google Scholar

44. Senyshyn, A., Trots, D. M., Engel, J. M., Vasylechko, L., Ehrenberg, H., Hansen, T., Berkowski, M., Fuess, H. J. Phys. Condens. Matter 2009, 21, 145405; https://doi.org/10.1088/0953-8984/21/14/145405.Suche in Google Scholar PubMed

45. Senyshyn, A., Boysen, H., Niewa, R., Banys, J., Kinka, M., Burak, Y., Adamiv, V., Izumi, F., Chumak, I., Fuess, H. J. Phys. D Appl. Phys. 2012, 45, 175305; https://doi.org/10.1088/0022-3727/45/17/175305.Suche in Google Scholar

46. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. R., Murshed, M. M. Z. Kristallogr. 2013, 228, 532–543; https://doi.org/10.1524/zkri.2013.1640.Suche in Google Scholar

47. Hoffmann, K., Murshed, M. M., Fischer, R. X., Schneider, H., Gesing, T. M. Z. für Kristallogr. - Cryst. Mater. 2014, 229, 699–708; https://doi.org/10.1515/zkri-2014-1785.Suche in Google Scholar

48. Hoffmann, K., Hooper, T. J. N., Murshed, M. M., Dolotko, O., Révay, Z., Senyshyn, A., Schneider, H., Hanna, J. V., Gesing, T. M., Fischer, R. X. J. Solid State Chem. 2016, 243, 124–135; https://doi.org/10.1016/j.jssc.2016.08.018.Suche in Google Scholar

49. Murshed, M. M., Zhao, P., Fischer, M., Huq, A., Alekseev, E. V., Gesing, T. M. Mater. Res. Bull. 2016, 84, 273–282; https://doi.org/10.1016/j.materresbull.2016.08.020.Suche in Google Scholar

50. Murshed, M. M., Šehović, M., Fischer, M., Senyshyn, A., Schneider, H., Gesing, T. M. J. Am. Ceram. Soc. 2017, 100, 5259–5273; https://doi.org/10.1111/jace.15028.Suche in Google Scholar

51. Kirsch, A., Murshed, M. M., Kirkham, M. J., Huq, A., Litterst, F. J., Gesing, T. M. J. Phys. Chem. C 2018, 122, 28280–28291; https://doi.org/10.1021/acs.jpcc.8b05740.Suche in Google Scholar

52. Murshed, M. M., Petersen, H., Fischer, M., Curti, M., Mendive, C. B., Baran, V., Senyshyn, A., Gesing, T. M. J. Am. Ceram. Soc. 2019, 102, 2154–2164.Suche in Google Scholar

53. Robben, L. Z. für Kristallogr. - Cryst. Mater. 2017, 232, 267–277; https://doi.org/10.1515/zkri-2016-2000.Suche in Google Scholar

54. Poltz, I. Synthese und Struktur-Eigenschaftsbeziehungen gallogermanatischer Sodalithe |NaaXb(H2O)n|[GaGeO4]6 und verwandter Verbindungen. Dissertation, Universität Bremen, Bremen, 2015.Suche in Google Scholar

55. James, J. D., Spittle, J. A., Brown, S. G. R., Evans, R. W. Meas. Sci. Technol. 2001, 12, R1–R15; https://doi.org/10.1088/0957-0233/12/3/201.Suche in Google Scholar

56. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1979, 35, 929–935; https://doi.org/10.1016/0584-8539(79)80016-1.Suche in Google Scholar

57. Henderson, C. M. B., Taylor, D. Spectrochim. Acta, Part A 1977, 33, 283–290; https://doi.org/10.1016/0584-8539(77)80032-9.Suche in Google Scholar

58. Johnson, G. M., Weller, M. T. Stud. Surf. Sci. Catal. 1997, 105, 269–275; https://doi.org/10.1016/s0167-2991(97)80565-4.Suche in Google Scholar

59. Engelhardt, G., Felsche, J., Sieger, P. J. Am. Chem. Soc. 1992, 114, 1173–1182; https://doi.org/10.1021/ja00030a008.Suche in Google Scholar

60. Wiebcke, M., Sieger, P., Felsche, J., Engelhardt, G., Behrens, P., Schefer, J. Z. Anorg. Allg. Chem. 1993, 619, 1321–1329; https://doi.org/10.1002/zaac.19936190728.Suche in Google Scholar

61. Murshed, M. M., Gesing, T. M. Z. Anorg. Allg. Chem. 2009, 635, 2147–2149; https://doi.org/10.1002/zaac.200900061.Suche in Google Scholar

62. Antao, S. M., Hassan, I. Can. Mineral. 2002, 40, 163–172; https://doi.org/10.2113/gscanmin.40.1.163.Suche in Google Scholar

63. Schipper, D. J., Lathouwers, D. J., Doorn, C. Z. J. Am. Ceram. Soc. 1973, 56, 523–525; https://doi.org/10.1111/j.1151-2916.1973.tb12402.x.Suche in Google Scholar

64. Sharp, Z. D., Helffrich, G. R., Bohlen, S. R., Essene, E. J. Geochem. Cosmochim. Acta 1989, 53, 1943–1954; https://doi.org/10.1016/0016-7037(89)90315-3.Suche in Google Scholar

65. Shannon, R. D., Prewitt, C. T. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Chem. 1969, 25, 925–946; https://doi.org/10.1107/s0567740869003220.Suche in Google Scholar

66. Shannon, R. D. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar

67. Fons, P., Kolobov, A. V., Krbal, M., Tominaga, J., Andrikopoulos, K. S., Yannopoulos, S. N., Voyiatzis, G. A., Uruga, T. Phys. Rev. B 2010, 82; https://doi.org/10.1103/physrevb.82.155209.Suche in Google Scholar

68. Müser, M. H., Binder, K. Phys. Chem. Miner. 2001, 28, 746–755.10.1007/s002690100203Suche in Google Scholar

69. Brown, I. D., Altermatt, D. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/s0108768185002063.Suche in Google Scholar

70. Brown, I. D. Chem. Rev. 2009, 109, 6858–6919; https://doi.org/10.1021/cr900053k.Suche in Google Scholar PubMed PubMed Central

71. Brese, N. E., O’Keeffe, M. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/s0108768190011041.Suche in Google Scholar

72. Lindemann, F. A. Phys. Z. 1910, 11, 609–612.10.3109/07357909309011680Suche in Google Scholar

73. Shelimova, L. E., Plachkova, S. K. Phys. Status Solidi 1987, 104, 679–685; https://doi.org/10.1002/pssa.2211040219.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0004).


Received: 2022-01-18
Accepted: 2022-01-19
Published Online: 2022-02-07
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2022-0004/html
Button zum nach oben scrollen