Abstract
Beryllium and BeCl2 were treated with trifluoromethanesulfonic acid and trimethylsilyltriflate, respectively to form beryllium triflates BeL2(OTf)2 (L=H2O, THF, nBu2O). The Be–O atomic distances (1.605–1.635 Å) between Be2+ and the triflate anions in solid state are the shortest known distances of this kind in a metal triflate yet. Attempts to remove the solvate molecules led to the decomposition of the obtained compounds.
Dedication to: Professor Ulrich Müller on the occasion of his 80th birthday
Acknowledgment
M.R.B. thanks Prof. F. Kraus for moral and financial support as wells as the provision of laboratory space. The DFG is gratefully acknowledged for financial support (BU2725/5-1; BU2725/8-1).
References
[1] S. Kobayashi, I. Hachiya, Lanthanide triflates as water-tolerant lewis acids. Activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J. Org. Chem.1994, 59, 3590.10.1021/jo00092a017Suche in Google Scholar
[2] S. Kobayashi, I. Hachiya, M. Yasuda, Aldol reactions on solid phase. Sc(OTf)3-Catalyzed aldol reactions of polymer-supported silyl enol ethers with aldehydes providing convenient methods for the preparation of 1,3-diol, β-hydroxy carboxylic acid, and β-hydroxy aldehyde libraries. Tetrahedron Lett.1996, 37, 5569.10.1016/0040-4039(96)01158-6Suche in Google Scholar
[3] L. Yu, D. Chen, P. G. Wang, Aqueous aza Diels-Alder reactions catalyzed by lanthanide(III) trifluoromethanesulfonates. Tetrahedron Lett.1996, 37, 2169.10.1016/0040-4039(96)00222-5Suche in Google Scholar
[4] S. Kobayashi, H. Ishitani, I. Hachiya, M. Araki, Asymmetric Diels-Alder reactions catalyzed by chiral lanthanide(III) trifluoromethanesulfonates. Unique structure of the triflate and stereoselective synthesis of both enantiomers using a single chiral source and a choice of achiral ligands, Tetrahedron1994, 50, 11623.10.1016/S0040-4020(01)85657-XSuche in Google Scholar
[5] T. Tsuchimoto, K. Tobita, T. Hiyama, S. Fukuzawa, Scandium(II) triflate catalyzed friedel-crafts alkylation with benzyl and allyl alcohols. Synlett.1996, 6, 557.10.1055/s-1996-5498Suche in Google Scholar
[6] A. Kawada, S. Mitamura, S. Kobayashi, Ln(OTf)3-LiClO4 as reusable catalyst system for Friedel-Crafts acylation. Chem. Commun.1996, 183.10.1039/CC9960000183Suche in Google Scholar
[7] I. Albinsson, B. Mellander, J. R. Stevens, Ionic conductivity in poly(propylene glycol) complexed with lithium and sodium triflate. J. Chem. Phys.1992, 96, 681.10.1063/1.462453Suche in Google Scholar
[8] G. Girish Kumar, N. Munichandraiah, Poly(methylmethacrylate)–magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim. Acta2002, 47, 1013.10.1016/S0013-4686(01)00832-5Suche in Google Scholar
[9] Z. Wang, S. Tian, B. Shao, S. Li, L. Li, J. Yang, Cerium triflate as superoxide radical scavenger to improve cycle life of LiO2 battery. J. Power Sources2019, 414, 327.10.1016/j.jpowsour.2019.01.025Suche in Google Scholar
[10] R. Younesi, G. M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ. Sci.2015, 8, 1905.10.1039/C5EE01215ESuche in Google Scholar
[11] E. J. Corey, K. Shimoji, Magnesium and zinc-catalyzed thioketalization. Tetrahedron Lett.1983, 24, 169.10.1016/S0040-4039(00)81357-XSuche in Google Scholar
[12] R. Dinnebier, N. Sofina, L. Hildebrandt, M. Jansen, Crystal structures of the trifluoromethyl sulfonates M(SO3CF3)2 (M=Mg, Ca, Ba, Zn, Cu) from synchrotron X-ray powder diffraction data. Acta Crystallogr.2006, B62, 467.10.1107/S0108768106009517Suche in Google Scholar
[13] J. Desmurs, I. Dunach, S. Olivera, S. Antoniotti, Preparation de sels metalliques de l’acide triflique et de l’acide triflimidique sous ultrasons. WO 2012010752, 2010.Suche in Google Scholar
[14] S. Antoniotti, E. Dunach, Facile preparation of metallic triflates and triflimidates by oxidative dissolution of metal powders. Chem. Commun.2008, 44, 993.10.1039/b717689aSuche in Google Scholar
[15] N. Sofina, E.-M. Peters, M. Jansen, Kristallstrukturanalyse und Natriumionenleitung von wasserfreiem α-Natriumtrifluoromethylsulfonat. Z. Anorg. Allg. Chem.2003, 629, 1431.10.1002/zaac.200300103Suche in Google Scholar
[16] L. Hildebrandt, R. Dinnebier, M. Jansen, Crystal structure and ionic conductivity of three polymorphic phases of rubidium trifluoromethyl sulfonate, RbSO3CF3. Inorg. Chem.2006, 45, 3217.10.1021/ic0516313Suche in Google Scholar
[17] L. Hildebrandt, R. Dinnebier, M. Jansen, Crystal structure and ionic conductivity of cesium trifluoromethyl sulfonate, CsSO3CF3. Z. Anorg. Allg. Chem.2005, 631, 1660.10.1002/zaac.200500097Suche in Google Scholar
[18] J. M. Harrowfield, D. L. Kepert, J. M. Patrick, A. H. White, Structure and stereochemistry in ‘f-block’ complexes of high coordination number. VIII. The [M(unidentate)9] system. Crystal structures of [M(OH2)9] [CF3SO3]3, M=La, Gd, Lu, Y. Aust. J. Chem.1983, 36, 483.10.1071/CH9830483Suche in Google Scholar
[19] J. Näslund, I. Persson, M. Sandström, Solvation of the bismuth(III) Ion by water, dimethyl sulfoxide, N,N′-dimethylpropyleneurea, and N,N-dimethylthioformamide. An EXAFS, large-angle X-ray scattering, and crystallographic structural study. Inorg. Chem.2000, 39, 4012.10.1021/ic000022mSuche in Google Scholar
[20] C. Nguyen-Trung, J. C. Bryan, D. A. Palmer, Crystal structure and thermogravimetric analysis of hexaaquazinc triflate. Struct. Chem.2004, 15, 89.10.1023/B:STUC.0000011243.10406.8bSuche in Google Scholar
[21] W. Uhlig, Zur Synthese neuartiger Triflate der 14. Gruppe. J. Organomet. Chem.1991, 409, 377.10.1016/0022-328X(91)80024-ESuche in Google Scholar
[22] P. J. Riedel, N. Arulsamy, M. P. Mehn, Facile routes to manganese(II) triflate complexes. Inorg. Chem. Commun.2011, 14, 734.10.1016/j.inoche.2011.02.022Suche in Google Scholar
[23] C. R. Easley, J. Li, A. Banerjee, M. Panda, W. W. Brennessel, R. Loloee, E. Colacio, F. A. Chavez, Synthesis and characterization of 4-, 5-, and 6-coordinate tris(1-ethyl-4-isopropylimidazolyl-κN)phosphine cobalt(II) complexes. Eur. J. Inorg. Chem.2015, 2092.10.1002/ejic.201403203Suche in Google Scholar
[24] W. Massa, K. Dehnicke, [Be(OH2)4]Cl2 – Herstellung, IR-Spektrum und Kristallstruktur. Z. Anorg. Allg. Chem.2007, 633, 1366.10.1002/zaac.200700061Suche in Google Scholar
[25] V. Divjakovic, A. Edenharter, W. Nowacki, B. Ribar, Die Kristallstruktur von Tetraaquo-Berylliumnitrat, Be(OH2)4(NO3)2. Z. Kristallogr.1976, 144, 314.10.1524/zkri.1976.144.1-6.314Suche in Google Scholar
[26] I. G. Dance, H. C. Freeman, Refinement of the crystal structure of beryllium sulphate tetrahydrate. Acta Crystallogr.1969, B25, 304.10.1107/S0567740869002159Suche in Google Scholar
[27] T. E. Gier, X. Bu, G. D. Stucky, W. T. A. Harrison, Tetrahedral networks containing beryllium: syntheses and structures of Be3(PO4)2·2H2O and Be(HAsO4)·H2O. J. Solid State Chem.1999, 146, 394.10.1006/jssc.1999.8370Suche in Google Scholar
[28] H. Schmidbaur, O. Kumberger, J. Riede, Beryllium salicylate dihydrate. Inorg. Chem.1991, 30, 3101.10.1021/ic00015a032Suche in Google Scholar
[29] M. Tremayne, P. Lightfoot, M. A. Mehta, P. G. Bruce, K. D. M. Harris, K. Shankland, C. J. Gilmore, G. Bricogne, Ab initio structure determination of LiCF3SO3 from X-ray powder diffraction data using entropy maximization and likelihood ranking. J. Solid State Chem.1992, 100, 191.10.1016/0022-4596(92)90172-RSuche in Google Scholar
[30] J. O. Lundgren, Hydrogen bond studies. CXXXI. The crystal structure of trifluoromethanesulphonic acid pentahydrate, H3O+CF3SO3−·4H2O. Acta Crystallogr.1978, B34, 2432.10.1107/S0567740878008389Suche in Google Scholar
[31] A. Chatterjee, E. N. Maslen, K. J. Watson, The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr.1988, B44, 381.10.1107/S0108768188001764Suche in Google Scholar
[32] D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith, G. Jeffery Leigh, Facile synthesis of complexes of vanadium(II) and the crystal and molecular structures of hexaaquavanadium(II) trifluoromethylsulphonate. Inorg. Chim. Acta1990, 169, 201.10.1016/S0020-1693(00)80518-6Suche in Google Scholar
[33] V. K. Bel’skii, N. R. Strel’tsova, B. M. Bulychev, L. V. Ivakina, P. A. Storozhenko, Structure of bistetrahydrofuranberyllium dichloride. J. Struct. Chem.1987, 28, 148.10.1007/BF00749567Suche in Google Scholar
[34] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, Off the beaten track–a hitchhiker’s guide to beryllium chemistry. Angew. Chem. Int. Ed.2016, 55, 10562.10.1002/anie.201601809Suche in Google Scholar PubMed
[35] S. M. Oldham, B. L. Scott, W. J. Oldham Jr, Reaction of the N-heterocyclic carbene, 1,3-dimesityl- imidazol-2-ylidene, with a uranyl triflate complex, UO2(OTf)2(thf)3. Appl. Organomet. Chem.2005, 20, 39.10.1002/aoc.1008Suche in Google Scholar
[36] G. Linti, A. Seifert, Subvalente galliumtriflate – mögliche Ausgangsverbindungen für Clusterverbindungen des Galliums. Z. Anorg. Allg. Chem.2008, 634, 1312.10.1002/zaac.200800052Suche in Google Scholar
[37] M. Xëmard, M. Cordier, E. Louyriac, L. Maron, C. Clavaguéra, G. Nocton, Small molecule activation with divalent samarium triflate: a synergistic effort to cleave O2. Dalton Trans.2018, 47, 9226.10.1039/C8DT02196ASuche in Google Scholar PubMed
[38] J. Gottfriedsen, S. Blaurock, The first carbene complex of a diorganoberyllium: synthesis and structural characterization of Ph2Be(i-Pr-carbene) and Ph2Be(n-Bu2O). Organometallics2006, 25, 3784.10.1021/om0603114Suche in Google Scholar
[39] M. Müller, M. R. Buchner, Beryllium-induced conversion of aldehydes. Chem. Eur. J.2019, 25, 11147.10.1002/chem.201902414Suche in Google Scholar PubMed PubMed Central
[40] M. Müller, M. R. Buchner, Solution behavior of beryllium halides in dimethylformamide. Inorg. Chem.2019, 58, 13276.10.1021/acs.inorgchem.9b02139Suche in Google Scholar PubMed
[41] M. Müller, F. Pielnhofer, M. R. Buchner, A facile synthesis for BeCl2, BeBr2 and BeI2. Dalton Trans.2018, 47, 12506.10.1039/C8DT01756ESuche in Google Scholar
[42] x-area, Stoe & Cie GmbH, Darmstadt (Germany) 2017.Suche in Google Scholar
[43] G. Sheldrick, shelxt – Integrated space-group and crystal-structure determination. Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
[44] G. Sheldrick, Crystal structure refinement with shelxt. Acta Crystallogr.2015, C71, 3.10.1107/S2053273314026370Suche in Google Scholar
[45] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for shelxt. J. Appl. Crystallogr.2011, 44, 1281.10.1107/S0108767319098143Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0016).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide