Startseite Functional alterations in overweight/obesity: focusing on the reward and executive control network
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional alterations in overweight/obesity: focusing on the reward and executive control network

  • Haoyu Guo ORCID logo , Jinfeng Han , Mingyue Xiao und Hong Chen EMAIL logo
Veröffentlicht/Copyright: 14. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people’s physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.


Corresponding author: Hong Chen, Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China; and Research Center of Psychology and Social Development, Southwest University, Chongqing 400715, China, E-mail:

Award Identifier / Grant number: 32271087

Funding source: Chongqing Technology Innovation and Application Demonstration Major Theme Special Project

Award Identifier / Grant number: 2023GJJL-ZXX0001

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This study was supported by National Natural Science Foundation of China (No. 32271087) and Chongqing Technology Innovation and Application Demonstration Major Theme Special Project (No. 2023GJJL-ZXX0001).

  5. Data availability: Not applicable.

References

Appelhans, B.M., Woolf, K., Pagoto, S.L., Schneider, K.L., Whited, M.C., and Liebman, R. (2011). Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity 19: 2175–2182, https://doi.org/10.1038/oby.2011.57.Suche in Google Scholar PubMed PubMed Central

Batterink, L., Yokum, S., and Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage 52: 1696–1703, https://doi.org/10.1016/j.neuroimage.2010.05.059.Suche in Google Scholar PubMed PubMed Central

Birn, R.M., Murphy, K., and Bandettini, P.A. (2008). The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum. Brain Mapp. 29: 740–750, https://doi.org/10.1002/hbm.20577.Suche in Google Scholar PubMed PubMed Central

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34: 537–541, https://doi.org/10.1002/mrm.1910340409.Suche in Google Scholar PubMed

Black, W.R., Lepping, R.J., Bruce, A.S., Powell, J.N., Bruce, J.M., Martin, L.E., Davis, A.M., Brooks, W.M., Savage, C.R., and Simmons, W.K. (2014). Tonic hyper-connectivity of reward neurocircuitry in obese children. Obesity 22: 1590–1593, https://doi.org/10.1002/oby.20741.Suche in Google Scholar PubMed PubMed Central

Bonnelle, V., Ham, T.E., Leech, R., Kinnunen, K.M., Mehta, M.A., Greenwood, R.J., and Sharp, D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proc. Natl. Acad. Sci. U. S. A. 109: 4690–4695, https://doi.org/10.1073/pnas.1113455109.Suche in Google Scholar PubMed PubMed Central

Boutelle, K.N., Wierenga, C.E., Bischoff-Grethe, A., Melrose, A.J., Grenesko-Stevens, E., Paulus, M.P., and Kaye, W.H. (2015). Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int. J. Obes. 39: 620–628, https://doi.org/10.1038/ijo.2014.206.Suche in Google Scholar PubMed PubMed Central

Bruce, A.S., Holsen, L.M., Chambers, R.J., Martin, L.E., Brooks, W.M., Zarcone, J.R., Butler, M.G., and Savage, C.R. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int. J. Obes. 34: 1494–1500, https://doi.org/10.1038/ijo.2010.84.Suche in Google Scholar PubMed PubMed Central

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-Hanna, J.R., Sperling, R.A., and Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29: 1860–1873, https://doi.org/10.1523/jneurosci.5062-08.2009.Suche in Google Scholar

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10: 186–198, https://doi.org/10.1038/nrn2575.Suche in Google Scholar PubMed

Carnell, S., Benson, L., Pantazatos, S.P., Hirsch, J., and Geliebter, A. (2014). Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity. Obesity 22: 2370–2378, https://doi.org/10.1002/oby.20859.Suche in Google Scholar PubMed PubMed Central

Christensen, E.L., Harding, I.H., Voigt, K., Chong, T.T., and Verdejo-Garcia, A. (2022). Neural underpinnings of food choice and consumption in obesity. Int. J. Obes. 46: 194–201, https://doi.org/10.1038/s41366-021-00974-4.Suche in Google Scholar PubMed

Cole, M.W., Pathak, S., and Schneider, W. (2010). Identifying the brain’s most globally connected regions. Neuroimage 49: 3132–3148, https://doi.org/10.1016/j.neuroimage.2009.11.001.Suche in Google Scholar PubMed

Contreras-Rodríguez, O., Martín-Pérez, C., Vilar-López, R., and Verdejo-Garcia, A. (2017a). Ventral and dorsal striatum networks in obesity: link to food craving and weight gain. Biol. Psychiatr. 81: 789–796, https://doi.org/10.1016/j.biopsych.2015.11.020.Suche in Google Scholar PubMed

Contreras-Rodríguez, O., Vilar-López, R., Andrews, Z.B., Navas, J.F., Soriano-Mas, C., and Verdejo-García, A. (2017b). Altered cross-talk between the hypothalamus and non-homeostatic regions linked to obesity and difficulty to lose weight. Sci. Rep. 7: 9951, https://doi.org/10.1038/s41598-017-09874-y.Suche in Google Scholar PubMed PubMed Central

Coveleskie, K., Gupta, A., Kilpatrick, L.A., Mayer, E.D., Ashe-McNalley, C., Stains, J., Labus, J.S., and Mayer, E.A. (2015). Altered functional connectivity within the central reward network in overweight and obese women. Nutr. Diabetes 5: e148, https://doi.org/10.1038/nutd.2014.45.Suche in Google Scholar PubMed PubMed Central

Delgado, M.R., Beer, J.S., Fellows, L.K., Huettel, S.A., Platt, M.L., Quirk, G.J., and Schiller, D. (2016). Viewpoints: dialogues on the functional role of the ventromedial prefrontal cortex. Nat. Neurosci. 19: 1545–1552, https://doi.org/10.1038/nn.4438.Suche in Google Scholar PubMed

Devinsky, O., Morrell, M.J., and Vogt, B.A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain 118: 279–306, https://doi.org/10.1093/brain/118.1.279.Suche in Google Scholar PubMed

Ding, Y., Ji, G., Li, G., Zhang, W., Hu, Y., Liu, L., Wang, Y., Hu, C., Von Deneen, K.M., Han, Y., et al.. (2020). Altered interactions among resting-state networks in individuals with obesity. Obesity 28: 601–608, https://doi.org/10.1002/oby.22731.Suche in Google Scholar PubMed PubMed Central

Donofry, S.D., Stillman, C.M., and Erickson, K.I. (2020). A review of the relationship between eating behavior, obesity and functional brain network organization. Soc. Cognit. Affect. Neurosci. 15: 1157–1181, https://doi.org/10.1093/scan/nsz085.Suche in Google Scholar PubMed PubMed Central

Doucet, G.E., Rasgon, N., McEwen, B.S., Micali, N., and Frangou, S. (2018). Elevated body mass index is associated with increased integration and reduced cohesion of sensory-driven and internally guided resting-state functional brain networks. Cerebr. Cortex 28: 988–997, https://doi.org/10.1093/cercor/bhx008.Suche in Google Scholar PubMed PubMed Central

Fox, M.D. and Raichle, M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8: 700–711, https://doi.org/10.1038/nrn2201.Suche in Google Scholar PubMed

Frank, S., Wilms, B., Veit, R., Ernst, B., Thurnheer, M., Kullmann, S., Fritsche, A., Birbaumer, N., Preissl, H., and Schultes, B. (2014). Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int. J. Obes. 38: 341–348, https://doi.org/10.1038/ijo.2013.60.Suche in Google Scholar PubMed

Friston, K.J., Frith, C.D., Liddle, P.F., and Frackowiak, R.S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13: 5–14, https://doi.org/10.1038/jcbfm.1993.4.Suche in Google Scholar PubMed

García-García, I., Jurado, M.Á., Garolera, M., Marqués-Iturria, I., Horstmann, A., Segura, B., Pueyo, R., Sender-Palacios, M.J., Vernet-Vernet, M., Villringer, A., et al.. (2015). Functional network centrality in obesity: a resting-state and task fMRI study. Psychiatry Res. Neuroimaging 233: 331–338, https://doi.org/10.1016/j.pscychresns.2015.05.017.Suche in Google Scholar PubMed

García-García, I., Jurado, M.Á., Garolera, M., Segura, B., Sala-Llonch, R., Marqués-Iturria, I., Pueyo, R., Sender-Palacios, M.J., Vernet-Vernet, M., Narberhaus, A., et al.. (2013). Alterations of the salience network in obesity: a resting-state fMRI study. Hum. Brain Mapp. 34: 2786–2797, https://doi.org/10.1002/hbm.22104.Suche in Google Scholar PubMed PubMed Central

Guo, Y., Xia, Y., and Chen, K. (2023). The body mass index is associated with increased temporal variability of functional connectivity in brain reward system. Front. Nutr. 10: 1210726, https://doi.org/10.3389/fnut.2023.1210726.Suche in Google Scholar PubMed PubMed Central

Haber, S.N. and Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35: 4–26, https://doi.org/10.1038/npp.2009.129.Suche in Google Scholar PubMed PubMed Central

Hagan, K.E., Alasmar, A., Exum, A., Chinn, B., and Forbush, K.T. (2020). A systematic review and meta-analysis of attentional bias toward food in individuals with overweight and obesity. Appetite 151: 104710, https://doi.org/10.1016/j.appet.2020.104710.Suche in Google Scholar PubMed

Han, Y., She, Y., and Gao, X. (2017). The cause of obesity: an explanation from food reward perspective. Adv. Psychol. Sci. 25: 452–462, https://doi.org/10.3724/sp.j.1042.2017.00452.Suche in Google Scholar

Herrmann, M.J., Tesar, A.K., Beier, J., Berg, M., and Warrings, B. (2019). Grey matter alterations in obesity: a meta-analysis of whole-brain studies. Obes. Rev. 20: 464–471, https://doi.org/10.1111/obr.12799.Suche in Google Scholar PubMed

Hogarth, L., Chase, H.W., and Baess, K. (2012). Impaired goal-directed behavioural control in human impulsivity. Q. J. Exp. Psychol. 65: 305–316, https://doi.org/10.1080/17470218.2010.518242.Suche in Google Scholar PubMed PubMed Central

Hoogendoorn, M., Galekop, M., and Van Baal, P. (2023). The lifetime health and economic burden of obesity in five European countries: what is the potential impact of prevention? Diabetes Obes. Metabol. 25: 2351–2361, https://doi.org/10.1111/dom.15116.Suche in Google Scholar PubMed

Houben, K., Nederkoorn, C., and Jansen, A. (2014). Eating on impulse: the relation between overweight and food-specific inhibitory control. Obesity 22: E6–E8, https://doi.org/10.1002/oby.20670.Suche in Google Scholar PubMed

Huang, J., Wang, C., Zhang, H.B., Zheng, H., Huang, T., and Di, J.Z. (2023). Neuroimaging and neuroendocrine insights into food cravings and appetite interventions in obesity. Psychoradiology 3: kkad023, https://doi.org/10.1093/psyrad/kkad023.Suche in Google Scholar PubMed PubMed Central

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Network. 13: 411–430, https://doi.org/10.1016/s0893-6080(00)00026-5.Suche in Google Scholar PubMed

Iceta, S., Rodrigue, C., Legendre, M., Daoust, J., Flaudias, V., Michaud, A., and Bégin, C. (2021). Cognitive function in binge eating disorder and food addiction: a systematic review and three-level meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 111: 110400, https://doi.org/10.1016/j.pnpbp.2021.110400.Suche in Google Scholar PubMed

Ishida, Y., Yoshida, D., Honda, T., Hirakawa, Y., Shibata, M., Sakata, S., Furuta, Y., Oishi, E., Hata, J., Kitazono, T., et al.. (2020). Influence of the accumulation of unhealthy eating habits on obesity in a general Japanese population: the Hisayama study. Nutrients 12: 3160, https://doi.org/10.3390/nu12103160.Suche in Google Scholar PubMed PubMed Central

Janssen, L.K., Duif, I., Van Loon, I., Wegman, J., De Vries, J.H.M., Cools, R., and Aarts, E. (2017). Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity. Neuroimage 146: 148–156, https://doi.org/10.1016/j.neuroimage.2016.11.015.Suche in Google Scholar PubMed

Kantonen, T., Pekkarinen, L., Karjalainen, T., Bucci, M., Kalliokoski, K., Haaparanta-Solin, M., Aarnio, R., Dickens, A.M., Von Eyken, A., Laitinen, K., et al.. (2022). Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB1 receptor availability. Int. J. Obes. 46: 400–407, https://doi.org/10.1038/s41366-021-00996-y.Suche in Google Scholar PubMed PubMed Central

Kim, M. and Kim, Y. (2022). Psychosocial stress accompanied by an unhealthy eating behavior is associated with abdominal obesity in Korean adults: a community-based prospective cohort study. Front. Nutr. 9: 949012, https://doi.org/10.3389/fnut.2022.949012.Suche in Google Scholar PubMed PubMed Central

Kringelbach, M.L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6: 691–702, https://doi.org/10.1038/nrn1747.Suche in Google Scholar PubMed

Kullmann, S., Heni, M., Linder, K., Zipfel, S., Haring, H.U., Veit, R., Fritsche, A., and Preissl, H. (2014). Resting-state functional connectivity of the human hypothalamus. Hum. Brain Mapp. 35: 6088–6096, https://doi.org/10.1002/hbm.22607.Suche in Google Scholar PubMed PubMed Central

Kullmann, S., Pape, A.A., Heni, M., Ketterer, C., Schick, F., Häring, H.U., Fritsche, A., Preissl, H., and Veit, R. (2013). Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cerebr. Cortex 23: 1247–1256, https://doi.org/10.1093/cercor/bhs124.Suche in Google Scholar PubMed

Lalousis, P.A., Malaviya, A., Upthegrove, R., Heinze, K., Diukova, A., Auer, D., Liddle, P., and Mallikarjun, P. (2022). Trait related aberrant connectivity in clinically stable patients with schizophrenia: a seed based resting state fMRI study. Brain Imag. Behav. 16: 2705–2714, https://doi.org/10.1007/s11682-022-00731-9.Suche in Google Scholar PubMed PubMed Central

Lavagnino, L., Arnone, D., Cao, B., Soares, J.C., and Selvaraj, S. (2016). Inhibitory control in obesity and binge eating disorder: a systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci. Biobehav. Rev. 68: 714–726, https://doi.org/10.1016/j.neubiorev.2016.06.041.Suche in Google Scholar PubMed

Lee, H., Kwon, J., Lee, J.E., Park, B.Y., and Park, H. (2022). Disrupted stepwise functional brain organization in overweight individuals. Commun. Biol. 5: 11, https://doi.org/10.1038/s42003-021-02957-7.Suche in Google Scholar PubMed PubMed Central

Leong, J.K., Pestilli, F., Wu, C.C., Samanez-Larkin, G.R., and Knutson, B. (2016). White-matter tract connecting anterior insula to nucleus accumbens correlates with reduced preference for positively skewed gambles. Neuron 89: 63–69, https://doi.org/10.1016/j.neuron.2015.12.015.Suche in Google Scholar PubMed PubMed Central

Li, G., Hu, Y., Zhang, W., Wang, J., Ji, W., Manza, P., Volkow, N.D., Zhang, Y., and Wang, G.J. (2023). Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol. Psychiatr. 28: 1466–1479, https://doi.org/10.1038/s41380-023-02025-y.Suche in Google Scholar PubMed PubMed Central

Lips, M.A., Wijngaarden, M.A., Van der Grond, J., Van Buchem, M.A., De Groot, G.H., Rombouts, S.A., Pijl, H., and Veer, I.M. (2014). Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am. J. Clin. Nutr. 100: 524–531, https://doi.org/10.3945/ajcn.113.080671.Suche in Google Scholar PubMed

Liu, X., Turel, O., Xiao, Z., Lv, C., and He, Q. (2023). Neural differences of food-specific inhibitory control in people with healthy versus higher BMI. Appetite 188: 106759, https://doi.org/10.1016/j.appet.2023.106759.Suche in Google Scholar

Marek, S. and Dosenbach, N.U.F. (2018). The frontoparietal network function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 20: 133–140, https://doi.org/10.31887/dcns.2018.20.2/smarek.Suche in Google Scholar

McGreen, J., Kemps, E., and Tiggemann, M. (2023). The relationship between inhibitory control and food consumption or choice: a systematic review and meta-analysis. Appetite 183: 106466, https://doi.org/10.1016/j.appet.2023.106466.Suche in Google Scholar

McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., and Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6: 160–188, https://doi.org/10.1002/(sici)1097-0193(1998)6:3<160::aid-hbm5>3.0.co;2-1.10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.3.CO;2-RSuche in Google Scholar

McKeown, M.J. and Sejnowski, T.J. (1998). Independent component analysis of fMRI data: examining the assumptions. Hum. Brain Mapp. 6: 368–372, https://doi.org/10.1002/(sici)1097-0193(1998)6:5/6<368::aid-hbm7>3.3.co;2-5.10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-ESuche in Google Scholar

Meng, X., Huang, D., Ao, H., Wang, X., and Gao, X. (2020). Food cue recruits increased reward processing and decreased inhibitory control processing in the obese/overweight: an activation likelihood estimation meta-analysis of fMRI studies. Obes. Res. Clin. Pract. 14: 127–135, https://doi.org/10.1016/j.orcp.2020.02.004.Suche in Google Scholar

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cognit. Sci. 15: 483–506, https://doi.org/10.1016/j.tics.2011.08.003.Suche in Google Scholar

Menon, V. and D’Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47: 90–103, https://doi.org/10.1038/s41386-021-01152-w.Suche in Google Scholar

Mezzacappa, E. (2011) Executive function. In: Brown, B.B. and Prinstein, M.J. (Eds.). Encyclopedia of adolescence. Academic Press, New York, pp. 142–150.10.1016/B978-0-12-373951-3.00016-8Suche in Google Scholar

Moreno-Lopez, L., Contreras-Rodriguez, O., Soriano-Mas, C., Stamatakis, E.A., and Verdejo-Garcia, A. (2016). Disrupted functional connectivity in adolescent obesity. NeuroImage-Clin. 12: 262–268, https://doi.org/10.1016/j.nicl.2016.07.005.Suche in Google Scholar

Moreno-Padilla, M., Verdejo-Román, J., Fernández-Serrano, M.J., Reyes Del Paso, G.A., and Verdejo-García, A. (2018). Increased food choice-evoked brain activation in adolescents with excess weight: relationship with subjective craving and behavior. Appetite 131: 7–13, https://doi.org/10.1016/j.appet.2018.08.031.Suche in Google Scholar PubMed

Nummenmaa, L., Hirvonen, J., Hannukainen, J.C., Immonen, H., Lindroos, M.M., Salminen, P., and Nuutila, P. (2012). Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One 7: e31089, https://doi.org/10.1371/journal.pone.0031089.Suche in Google Scholar PubMed PubMed Central

Park, B.Y., Byeon, K., Lee, M.J., Chung, C.S., Kim, S.H., Morys, F., Bernhardt, B., Dagher, A., and Park, H. (2020). Whole-brain functional connectivity correlates of obesity phenotypes. Hum. Brain Mapp. 41: 4912–4924, https://doi.org/10.1002/hbm.25167.Suche in Google Scholar PubMed PubMed Central

Park, B.Y., Lee, M.J., Kim, M., Kim, S.H., and Park, H. (2018). Structural and functional brain connectivity changes between people with abdominal and non-abdominal obesity and their association with behaviors of eating disorders. Front. Neurosci. 12: 741, https://doi.org/10.3389/fnins.2018.00741.Suche in Google Scholar PubMed PubMed Central

Pujol, J., Blanco-Hinojo, L., Martinez-Vilavella, G., Deus, J., Perez-Sola, V., and Sunyer, J. (2021). Dysfunctional brain reward system in child obesity. Cerebr. Cortex 31: 4376–4385, https://doi.org/10.1093/cercor/bhab092.Suche in Google Scholar PubMed

Raffone, A., Marzetti, L., Del Gratta, C., Perrucci, M.G., Romani, G.L., and Pizzella, V. (2019). Toward a brain theory of meditation. Prog. Brain Res. 244: 207–232, https://doi.org/10.1016/bs.pbr.2018.10.028.Suche in Google Scholar PubMed

Ravichandran, S., Bhatt, R.R., Pandit, B., Osadchiy, V., Alaverdyan, A., Vora, P., Stains, J., Naliboff, B., Mayer, E.A., and Gupta, A. (2021). Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals. Sci. Rep. 11: 3386, https://doi.org/10.1038/s41598-021-83116-0.Suche in Google Scholar PubMed PubMed Central

Reichelt, A.C., Westbrook, R.F., and Morris, M.J. (2015). Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br. J. Pharmacol. 172: 5225–5238, https://doi.org/10.1111/bph.13321.Suche in Google Scholar PubMed PubMed Central

Reinbacher, P., Draschl, A., Smolle, M.A., Hecker, A., Gaderer, F., Lanner, K.B., Ruckenstuhl, P., Sadoghi, P., Leithner, A., Nehrer, S., et al.. (2023). The impact of obesity on the health of the older population: a cross-sectional study on the relationship between health-related quality of life and body mass index across different age groups. Nutrients 16: 51, https://doi.org/10.3390/nu16010051.Suche in Google Scholar PubMed PubMed Central

Rolls, E.T. (2004). The functions of the orbitofrontal cortex. Brain Cognit. 55: 11–29, https://doi.org/10.1016/s0278-2626(03)00277-x.Suche in Google Scholar

Rolls, E.T., Cheng, W., and Feng, J. (2020). The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2: fcaa196, https://doi.org/10.1093/braincomms/fcaa196.Suche in Google Scholar PubMed PubMed Central

Schmidt, L., Medawar, E., Aron-Wisnewsky, J., Genser, L., Poitou, C., Clément, K., and Plassmann, H. (2021). Resting-state connectivity within the brain’s reward system predicts weight loss and correlates with leptin. Brain Commun. 3: fcab005, https://doi.org/10.1093/braincomms/fcab005.Suche in Google Scholar PubMed PubMed Central

Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., and Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27: 2349–2356, https://doi.org/10.1523/jneurosci.5587-06.2007.Suche in Google Scholar PubMed PubMed Central

Smitha, K.A., Akhil Raja, K., Arun, K.M., Rajesh, P.G., Thomas, B., Kapilamoorthy, T.R., and Kesavadas, C. (2017). Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuradiol. J. 30: 305–317, https://doi.org/10.1177/1971400917697342.Suche in Google Scholar PubMed PubMed Central

Spinelli, A., Censi, L., Mandolini, D., Ciardullo, S., Salvatore, M.A., Mazzarella, G., and Nardone, P. (2023). Inequalities in childhood nutrition, physical activity, sedentary behaviour and obesity in Italy. Nutrients 15: 3893, https://doi.org/10.3390/nu15183893.Suche in Google Scholar PubMed PubMed Central

Stevens, F.L., Hurley, R.A., and Taber, K.H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. J. Neuropsychiatry Clin. Neurosci. 23: 121–125, https://doi.org/10.1176/appi.neuropsych.23.2.121.Suche in Google Scholar

Steward, T., Miranda-Olivos, R., Soriano-Mas, C., and Fernandez-Aranda, F. (2019). Neuroendocrinological mechanisms underlying impulsive and compulsive behaviors in obesity: a narrative review of fMRI studies. Rev. Endocr. Metab. Disord. 20: 263–272, https://doi.org/10.1007/s11154-019-09515-x.Suche in Google Scholar PubMed

Stopyra, M.A., Friederich, H.C., Lavandier, N., Monning, E., Bendszus, M., Herzog, W., and Simon, J.J. (2021). Homeostasis and food craving in obesity: a functional MRI study. Int. J. Obes. 45: 2464–2470, https://doi.org/10.1038/s41366-021-00920-4.Suche in Google Scholar PubMed PubMed Central

Tan, Z., Hu, Y., Ji, G., Li, G., Ding, Y., Zhang, W., Wang, J., Jia, Z., Zhang, L., Li, H., et al.. (2022). Alterations in functional and structural connectivity of basal ganglia network in patients with obesity. Brain Topogr. 35: 453–463, https://doi.org/10.1007/s10548-022-00906-z.Suche in Google Scholar PubMed

Van Galen, K.A., Schrantee, A., Ter Horst, K.W., La Fleur, S.E., Booij, J., Constable, R.T., Schwartz, G.J., DiLeone, R.J., and Serlie, M.J. (2023). Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5: 1059–1072, https://doi.org/10.1038/s42255-023-00816-9.Suche in Google Scholar PubMed

Van Meer, F., Van der Laan, L.N., Eiben, G., Lissner, L., Wolters, M., Rach, S., Herrmann, M., Erhard, P., Molnar, D., Orsi, G., et al.. (2019). Development and body mass inversely affect children’s brain activation in dorsolateral prefrontal cortex during food choice. Neuroimage 201: 116016, https://doi.org/10.1016/j.neuroimage.2019.116016.Suche in Google Scholar PubMed

Wang, J., Dong, D., Liu, Y., Yang, Y., Chen, X., He, Q., Lei, X., Feng, T., Qiu, J., and Chen, H. (2023). Multivariate resting-state functional connectomes predict and characterize obesity phenotypes. Cerebr. Cortex 33: 8368–8381, https://doi.org/10.1093/cercor/bhad122.Suche in Google Scholar PubMed PubMed Central

Wijngaarden, M.A., Veer, I.M., Rombouts, S.A., Van Buchem, M.A., Willems van Dijk, K., Pijl, H., and Van der Grond, J. (2015). Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav. Brain Res. 287: 127–134, https://doi.org/10.1016/j.bbr.2015.03.016.Suche in Google Scholar PubMed

Wu, M., Brockmeyer, T., Hartmann, M., Skunde, M., Herzog, W., and Friederich, H.C. (2016). Reward-related decision making in eating and weight disorders: a systematic review and meta-analysis of the evidence from neuropsychological studies. Neurosci. Biobehav. Rev. 61: 177–196, https://doi.org/10.1016/j.neubiorev.2015.11.017.Suche in Google Scholar PubMed

Xiang, J., Xue, J., Guo, H., Li, D., Cui, X., Niu, Y., Yan, T., Cao, R., Ma, Y., Yang, Y., et al.. (2020). Graph-based network analysis of resting-state fMRI: test-retest reliability of binarized and weighted networks. Brain Imag. Behav. 14: 1361–1372, https://doi.org/10.1007/s11682-019-00042-6.Suche in Google Scholar PubMed

Yang, Y., Shields, G.S., Guo, C., and Liu, Y. (2018). Executive function performance in obesity and overweight individuals: a meta-analysis and review. Neurosci. Biobehav. Rev. 84: 225–244, https://doi.org/10.1016/j.neubiorev.2017.11.020.Suche in Google Scholar PubMed

Yokum, S. and Stice, E. (2023). Relation of overweight/obesity to reward region response to food reward and the moderating effects of parental history of eating pathology in adolescent females. Nutrients 15: 2558, https://doi.org/10.3390/nu15112558.Suche in Google Scholar PubMed PubMed Central

Yu, H., Li, M.L., Meng, Y., Li, X.J., Wei, W., Li, Y.F., Li, L., Guo, W., Wang, Q., Deng, W., et al.. (2021). Inferior frontal gyrus seed-based resting-state functional connectivity and sustained attention across manic/hypomanic, euthymic and depressive phases of bipolar disorder. J. Affect. Disord. 282: 930–938, https://doi.org/10.1016/j.jad.2020.12.199.Suche in Google Scholar PubMed

Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian, L.X., Jiang, T.Z., and Wang, Y.F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29: 83–91, https://doi.org/10.1016/j.braindev.2006.07.002.Suche in Google Scholar PubMed

Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage 22: 394–400, https://doi.org/10.1016/j.neuroimage.2003.12.030.Suche in Google Scholar PubMed

Zhang, X., Han, L., Lu, C., McIntyre, R.S., Teopiz, K.M., Wang, Y., Chen, H., and Cao, B. (2023). Brain structural and functional alterations in individuals with combined overweight/obesity and mood disorders: a systematic review of neuroimaging studies. J. Affect. Disord. 334: 166–179, https://doi.org/10.1016/j.jad.2023.04.126.Suche in Google Scholar PubMed

Zhang, W., Li, G., Manza, P., Hu, Y., Wang, J., Lv, G., He, Y., Von Deneen, K.M., Yu, J., Han, Y., et al.. (2022). Functional abnormality of the executive control network in individuals with obesity during delay discounting. Cerebr. Cortex 32: 2013–2021, https://doi.org/10.1093/cercor/bhab333.Suche in Google Scholar PubMed PubMed Central

Zhang, P., Liu, Y., Lv, H., Li, M.Y., Yu, F.X., Wang, Z., Ding, H.Y., Wang, L.X., Zhao, K.X., Zhang, Z.Y., et al.. (2019). Integration of neural reward processing and appetite-related signaling in obese females: evidence from resting-state fMRI. J. Magn. Reson. Imag. 50: 541–551, https://doi.org/10.1002/jmri.26576.Suche in Google Scholar PubMed

Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., Von Deneen, K.M., Zang, Y., Walter, M., and Liu, Y. (2015). Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci. Lett. 584: 156–161, https://doi.org/10.1016/j.neulet.2014.10.020.Suche in Google Scholar PubMed

Zhao, L. (2013). The gut microbiota and obesity: from correlation to causality. Nat. Rev. Microbiol. 11: 639–647, https://doi.org/10.1038/nrmicro3089.Suche in Google Scholar PubMed

Zhao, W., Makowski, C., Hagler, D.J., Garavan, H.P., Thompson, W.K., Greene, D.J., Jernigan, T.L., and Dale, A.M. (2023). Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. Neuroimage 270: 119946, https://doi.org/10.1016/j.neuroimage.2023.119946.Suche in Google Scholar PubMed PubMed Central

Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y.F., and Zang, Y.F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172: 137–141, https://doi.org/10.1016/j.jneumeth.2008.04.012.Suche in Google Scholar PubMed PubMed Central

Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., and Milham, M.P. (2012). Network centrality in the human functional connectome. Cerebr. Cortex 22: 1862–1875, https://doi.org/10.1093/cercor/bhr269.Suche in Google Scholar PubMed

Received: 2024-03-05
Accepted: 2024-04-26
Published Online: 2024-05-14
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0034/html
Button zum nach oben scrollen