Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Funding source: Norman Bethune Program of Jilin University
Award Identifier / Grant number: 2022B08
Funding source: Jilin Province Health Talent Special Project
Award Identifier / Grant number: 2022SCZ11
Acknowledgments
The authors would like to acknowledge Xinggui Wen (Jilin University, Changchun, China) for the preliminary work and summary of this article.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Jilin Province health talent special project [2022SCZ11] and Norman Bethune Program of Jilin University [2022B08].
-
Data availability: Not applicable.
References
Alike, Y., Yushan, M., Keremu, A., Abulaiti, A., Liu, Z.-H., Fu, W., Yan, L.-W., Yusufu, A., and Zhu, Q.-T. (2019). Application of custom anatomy-based nerve conduits on rabbit sciatic nerve defects: in vitro and in vivo evaluations. Neural Regen. Res. 14: 2173–2182, https://doi.org/10.4103/1673-5374.262601.Search in Google Scholar PubMed PubMed Central
Al’joboori, Y., Hannah, R., Lenham, F., Borgas, P., Kremers, C.J., Bunday, K.L., Rothwell, J., and Duffell, L.D. (2021). The immediate and short-term effects of transcutaneous spinal cord stimulation and peripheral nerve stimulation on corticospinal excitability. Front. Neurosci. 15: 749042, https://doi.org/10.3389/fnins.2021.749042.Search in Google Scholar PubMed PubMed Central
Al-Majed, A.A., Neumann, C.M., Brushart, T.M., and Gordon, T. (2000). Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20: 2602–2608, https://doi.org/10.1523/jneurosci.20-07-02602.2000.Search in Google Scholar PubMed PubMed Central
Beigom Hejazian, L., Esmaeilzade, B., Ghoroghi, F.M., Moradi, F., Hejazian, M.B., Aslani, A., Bakhtiari, M., Soleimani, M., and Nobakht, M. (2012). The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering. Iran Biomed. J. 16: 193–201.Search in Google Scholar
Bryan, D.J., Tang, J.B., Doherty, S.A., Hile, D.D., Trantolo, D.J., Wise, D.L., and Summerhayes, I.C. (2004). Enhanced peripheral nerve regeneration through a poled bioresorbable poly (lactic-co-glycolic acid) guidance channel. J. Neural Eng. 1: 91, https://doi.org/10.1088/1741-2560/1/2/004.Search in Google Scholar PubMed
Câmara, C.N.da S., Brito, M.V.H., Silveira, E.L., Silva, D.S.G.da, Simões, V.R.F., and Pontes, R.W.F. (2011). Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats. Acta Cir. Bras. 26: 12–18, https://doi.org/10.1590/s0102-86502011000100004.Search in Google Scholar PubMed
Chalfouh, C., Guillou, C., Hardouin, J., Delarue, Q., Li, X., Duclos, C., Schapman, D., Marie, J.-P., Cosette, P., and Guérout, N. (2020). The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury: mechanisms and pathways underlying the effect. Neurotherapeutics 17: 2069–2088, https://doi.org/10.1007/s13311-020-00915-5.Search in Google Scholar PubMed PubMed Central
Chang, C.-J. and Hsu, S. (2006). The effect of high outflow permeability in asymmetric poly (dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials 27: 1035–1042, https://doi.org/10.1016/j.biomaterials.2005.07.003.Search in Google Scholar PubMed
Chen, H., Wang, Y., Tu, W., Wang, H., Yin, H., Sha, H., and Li, Y. (2021a). Effects of photobiomodulation combined with MSCs transplantation on the repair of spinal cord injury in rat. J. Cell. Physiol. 236: 921–930, https://doi.org/10.1002/jcp.29902.Search in Google Scholar PubMed
Chen, Q.-M., Yao, F.-R., Sun, H.-W., Chen, Z.-G., Ke, J., Liao, J., Cai, X.-Y., Yu, L.-Q., Wu, Z.-Y., Wang, Z., et al.. (2021b). Combining inhibitory and facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment improves motor function by modulating GABA in acute ischemic stroke patients. Restor. Neurol. Neurosci. 39: 419–434, https://doi.org/10.3233/rnn-211195.Search in Google Scholar PubMed
Chew, S.Y., Wen, J., Yim, E.K.F., and Leong, K.W. (2005). Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6: 2017–2024, https://doi.org/10.1021/bm0501149.Search in Google Scholar PubMed
Cipitria, A., Skelton, A., Dargaville, T.R., Dalton, P.D., and Hutmacher, D.W. (2011). Design, fabrication and characterization of PCL electrospun scaffolds—a review. J. Mater. Chem. 21: 9419–9453, https://doi.org/10.1039/c0jm04502k.Search in Google Scholar
De Albornoz, P.M., Delgado, P.J., Forriol, F., and Maffulli, N. (2011). Non-surgical therapies for peripheral nerve injury. Br. Med. Bull. 100: 73–100, https://doi.org/10.1093/bmb/ldr005.Search in Google Scholar PubMed
Deal, N.D., Griffin, J.W., and Hogan, M.V. (2012). Nerve conduits for nerve repair or reconstruction. J. Am. Acad. Orthop. Surg. 20: 63–68, https://doi.org/10.5435/jaaos-20-02-063.Search in Google Scholar
Demir, A., Simsek, T., Acar, M., Aktaş, A., Vlamings, R., Ayyıldız, M., Yıldırım, M., Temel, Y., and Kaplan, S. (2014). Comparison between flexible collagen and vein conduits used for size-discrepant nerve repair: an experimental study in rats. J. Reconstr. Microsurg. 30: 329–334, https://doi.org/10.1055/s-0033-1356551.Search in Google Scholar PubMed
di Summa, P.G., Kingham, P.J., Campisi, C.C., Raffoul, W., and Kalbermatten, D.F. (2014). Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci. Lett. 572: 26–31, https://doi.org/10.1016/j.neulet.2014.04.029.Search in Google Scholar PubMed
Dinis, T.M., Elia, R., Vidal, G., Dermigny, Q., Denoeud, C., Kaplan, D.L., Egles, C., and Marin, F. (2015). 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J. Mech. Behav. Biomed. Mater. 41: 43–55, https://doi.org/10.1016/j.jmbbm.2014.09.029.Search in Google Scholar PubMed
Funnell, J.L., Balouch, B., and Gilbert, R.J. (2019). Magnetic composite biomaterials for neural regeneration. Front. Bioeng. Biotechnol. 7: 179, https://doi.org/10.3389/fbioe.2019.00179.Search in Google Scholar PubMed PubMed Central
Galla, T.J., Vedecnik, S.V., Halbgewachs, J., Steinmann, S., Friedrich, C., and Stark, G.B. (2004). Fibrin/Schwann cell matrix in poly-epsilon-caprolactone conduits enhances guided nerve regeneration. Int. J. Artif. Organs. 27: 127–136, https://doi.org/10.1177/039139880402700208.Search in Google Scholar PubMed
Georgiou, M., Bunting, S.C., Davies, H.A., Loughlin, A.J., Golding, J.P., and Phillips, J.B. (2013). Engineered neural tissue for peripheral nerve repair. Biomaterials 34: 7335–7343, https://doi.org/10.1016/j.biomaterials.2013.06.025.Search in Google Scholar PubMed
Gerardo-Nava, J., Hodde, D., Katona, I., Bozkurt, A., Grehl, T., Steinbusch, H.W., Weis, J., and Brook, G.A. (2014). Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials 35: 4288–4296, https://doi.org/10.1016/j.biomaterials.2014.02.007.Search in Google Scholar PubMed
Gigo-Benato, D., Geuna, S., and Rochkind, S. (2005). Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31: 694–701, https://doi.org/10.1002/mus.20305.Search in Google Scholar PubMed
Gonzalez-Perez, F., Cobianchi, S., Geuna, S., Barwig, C., Freier, T., Udina, E., and Navarro, X. (2015). Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat. Microsurgery 35: 300–308, https://doi.org/10.1002/micr.22362.Search in Google Scholar PubMed
Gonzalez-Perez, F., Hernández, J., Heimann, C., Phillips, J.B., Udina, E., and Navarro, X. (2017). Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. J. Neurosurg. 28: 109–118, https://doi.org/10.3171/2017.5.spine161100.Search in Google Scholar PubMed
Grinsell, D. and Keating, C.P. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed. Res. Int. 2014, Article ID 698256, https://doi.org/10.1155/2014/698256.Search in Google Scholar PubMed PubMed Central
Gu, X., Ding, F., Yang, Y., and Liu, J. (2011). Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol. 93: 204–230, https://doi.org/10.1016/j.pneurobio.2010.11.002.Search in Google Scholar PubMed
Guo, Q., Liu, C., Hai, B., Ma, T., Zhang, W., Tan, J., Fu, X., Wang, H., Xu, Y., and Song, C. (2018). Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J. Biomed. Mater. Res. B 106: 787–799, https://doi.org/10.1002/jbm.b.33890.Search in Google Scholar PubMed
Gutmann, E., Guttmann, L., Medawar, P.B., and Young, J.Z. (1942). The rate of regeneration of nerve. J. Exp. Biol. 19: 14–44, https://doi.org/10.1242/jeb.19.1.14.Search in Google Scholar
Haastert-Talini, K., Schmitte, R., Korte, N., Klode, D., Ratzka, A., and Grothe, C. (2011). Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. J. Neurotrauma 28: 661–674, https://doi.org/10.1089/neu.2010.1637.Search in Google Scholar PubMed
He, Q., Zhang, T., Yang, Y., and Ding, F. (2009). In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons. J. Mater. Sci.: Mater. Med. 20: 1457–1466, https://doi.org/10.1007/s10856-009-3702-8.Search in Google Scholar PubMed
Heath, C.A. and Rutkowski, G.E. (1998). The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends Biotechnol. 16: 163–168, https://doi.org/10.1016/s0167-7799(97)01165-7.Search in Google Scholar PubMed
Hoffman, H. and Binet, F. (1952). Acceleration and retardation of the process of axon-sprouting in partially denervated muscles. J. Exp. Biol. 30, https://doi.org/10.1038/icb.1952.52.Search in Google Scholar PubMed
Huang, G. and Li, L.U. (2010). The experimental study of repairing peripheral nerve damage with Schwann cells injected into the autogenous vein conduit. Chin. J. Nat. Med. 12: 249–252.Search in Google Scholar
Huang, Y., Wu, W., Liu, H., Chen, Y., Li, B., Gou, Z., Li, X., and Gou, M. (2021). 3D printing of functional nerve guide conduits. Burns Trauma 9, tkab011, https://doi.org/10.1093/burnst/tkab011.Search in Google Scholar PubMed PubMed Central
Janjic, J.M. and Gorantla, V.S. (2017). Peripheral nerve nanoimaging: monitoring treatment and regeneration. AAPS J. 19: 1304–1316, https://doi.org/10.1208/s12248-017-0129-x.Search in Google Scholar PubMed
Jara, J.S., Agger, S., and Hollis, E.R. (2020). Functional electrical stimulation and the modulation of the axon regeneration program. Front. Cell Dev. Biol. 8: 736, https://doi.org/10.3389/fcell.2020.00736.Search in Google Scholar PubMed PubMed Central
Jenkins, P.M., Laughter, M.R., Lee, D.J., Lee, Y.M., Freed, C.R., and Park, D. (2015). A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Res. Lett. 10: 264, https://doi.org/10.1186/s11671-015-0972-6.Search in Google Scholar PubMed PubMed Central
Jessen, K.R. and Mirsky, R. (2016). The repair Schwann cell and its function in regenerating nerves. J. Physiol. 594: 3521–3531, https://doi.org/10.1113/jp270874.Search in Google Scholar PubMed PubMed Central
Jiang, X., Lim, S.H., Mao, H.-Q., and Chew, S.Y. (2010). Current applications and future perspectives of artificial nerve conduits. Exp. Neurol. 223: 86–101, https://doi.org/10.1016/j.expneurol.2009.09.009.Search in Google Scholar PubMed
Jiang, X., Mi, R., Hoke, A., and Chew, S.Y. (2014). Nanofibrous nerve conduit-enhanced peripheral nerve regeneration: nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J. Tissue Eng. Regener. Med. 8: 377–385, https://doi.org/10.1002/term.1531.Search in Google Scholar PubMed
Jin, G., He, R., Sha, B., Li, W., Qing, H., Teng, R., and Xu, F. (2018). Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater. Sci. Eng., C 92: 995–1005, https://doi.org/10.1016/j.msec.2018.06.065.Search in Google Scholar PubMed
Johnson, C.D., D’Amato, A.R., Puhl, D.L., Wich, D.M., Vesperman, A., and Gilbert, R.J. (2018). Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth. Biomed. Mater. 13: 054101, https://doi.org/10.1088/1748-605x/aac4de.Search in Google Scholar PubMed PubMed Central
Johnson, E.O. and Soucacos, P.N. (2008). Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury 39: 30–36, https://doi.org/10.1016/j.injury.2008.05.018.Search in Google Scholar PubMed
Khang, G.S., Jeon, J.H., Cho, J.C., and Lee, H.B. (1999). Fabrication of tubular porous PLGA scaffold by emulsion freeze-drying method. Pollimo 23: 471–477.Search in Google Scholar
Kim, J.I., Hwang, T.I., Aguilar, L.E., Park, C.H., and Kim, C.S. (2016). A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6: 23761, https://doi.org/10.1038/srep23761.Search in Google Scholar PubMed PubMed Central
Kundu, B., Rajkhowa, R., Kundu, S.C., and Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Adv. Drug Delivery Rev. 65: 457–470, https://doi.org/10.1016/j.addr.2012.09.043.Search in Google Scholar PubMed
La Carrubba, V., Carfi’Pavia, F., Ghersi, G., and Brucato, V. (2011). Polyactide biodegradable scaffolds for tissue engineering applications: phase separation-based techniques. In: Biodegradable polymers: processing, Degradation and applications. Novapublishers, New York, pp. 109–206.Search in Google Scholar
Lackington, W.A., Ryan, A.J., and O’Brien, F.J. (2017). Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater. Sci. Eng. 3: 1221–1235, https://doi.org/10.1021/acsbiomaterials.6b00500.Search in Google Scholar PubMed
Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, A.L., and Maciel Filho, R. (2012). Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30: 321–328, https://doi.org/10.1016/j.biotechadv.2011.06.019.Search in Google Scholar PubMed
Lee, J., Carpena, N.T., Kim, S., Lee, M.Y., Jung, J.Y., and Choi, J.E. (2021). Photobiomodulation at a wavelength of 633 nm leads to faster functional recovery than 804 nm after facial nerve injury. J. Biophotonics 14: e202100159, https://doi.org/10.1002/jbio.202100159.Search in Google Scholar PubMed
Lee, S.K. and Wolfe, S.W. (2000). Peripheral nerve injury and repair. J. Am. Acad. Orthop. Surg. 8: 243–252, https://doi.org/10.5435/00124635-200007000-00005.Search in Google Scholar PubMed
Lemaitre, D. and Court, F.A. (2021). New insights on the molecular mechanisms of collateral sprouting after peripheral nerve injury. Neural Regen. Res. 16: 1760, https://doi.org/10.4103/1673-5374.306069.Search in Google Scholar PubMed PubMed Central
Li, R., Liu, Z., Pan, Y., Chen, L., Zhang, Z., and Lu, L. (2014). Peripheral nerve injuries treatment: a systematic review. Cell Biochem. Biophys. 68: 449–454, https://doi.org/10.1007/s12013-013-9742-1.Search in Google Scholar PubMed
Lin, Y.-C. and Marra, K.G. (2012). Injectable systems and implantable conduits for peripheral nerve repair. Biomed. Mater. 7: 024102, https://doi.org/10.1088/1748-6041/7/2/024102.Search in Google Scholar PubMed
Liu, M., Zhang, Y., Sun, S., Khan, A.R., Ji, J., Yang, M., and Zhai, G. (2019). Recent advances in electrospun for drug delivery purpose. J. Drug Targeting 27: 270–282, https://doi.org/10.1080/1061186x.2018.1481413.Search in Google Scholar PubMed
Liu, T., Xu, J., Chan, B.P., and Chew, S.Y. (2012). Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J. Biomed. Mater. Res., Part A 27A: 236–242, https://doi.org/10.1002/jbm.a.33271.Search in Google Scholar PubMed
Liu, Z., Huang, L., Liu, L., Luo, B., Liang, M., Sun, Z., Zhu, S., Quan, X., Yang, Y., Ma, T., et al.. (2015). Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field. Int. J. Nanomed. 10: 43–61, https://doi.org/10.2147/ijn.s74332.Search in Google Scholar
Liu, Z., Zhu, S., Liu, L., Ge, J., Huang, L., Sun, Z., Zeng, W., Huang, J., and Luo, Z. (2017). A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field. Int. J. Nanomed. 12: 7815–7832, https://doi.org/10.2147/ijn.s144715.Search in Google Scholar PubMed PubMed Central
Lundborg, G., Gelberman, R.H., Longo, F.M., Powell, H.C., and Varon, S. (1982). In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J. Neuropathol. Exp. Neurol. 41: 412–422, https://doi.org/10.1097/00005072-198207000-00004.Search in Google Scholar PubMed
Mackinnon, S.E., Doolabh, V.B., Novak, C.B., and Trulock, E.P. (2001). Clinical outcome following nerve allograft transplantation. Plast. Reconstr. Surg. 107: 1419–1429, https://doi.org/10.1097/00006534-200105000-00016.Search in Google Scholar PubMed
Matsuyama, T., Mackay, M., and Midha, R. (2000). Peripheral nerve repair and grafting techniques: a review. Neurol. Med. Chir. 40: 187–199, https://doi.org/10.2176/nmc.40.187.Search in Google Scholar PubMed
Memic, A., Abdullah, T., Mohammed, H.S., Joshi Navare, K., Colombani, T., and Bencherif, S.A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater. 2: 952–969, https://doi.org/10.1021/acsabm.8b00637.Search in Google Scholar PubMed
Meyer, C., Stenberg, L., Gonzalez-Perez, F., Wrobel, S., Ronchi, G., Udina, E., Suganuma, S., Geuna, S., Navarro, X., Dahlin, L.B., et al.. (2016a). Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76: 33–51, https://doi.org/10.1016/j.biomaterials.2015.10.040.Search in Google Scholar PubMed
Meyer, C., Wrobel, S., Raimondo, S., Rochkind, S., Heimann, C., Shahar, A., Ziv-Polat, O., Geuna, S., Grothe, C., and Haastert-Talini, K. (2016b). Peripheral nerve regeneration through hydrogel-enriched chitosan conduits containing engineered Schwann cells for drug delivery. Cell Transplant. 25: 159–182, https://doi.org/10.3727/096368915x688010.Search in Google Scholar PubMed
Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N., and Vacanti, J.P. (1994). Preparation and characterization of poly (L-lactic acid) foams. Polymer 35: 1068–1077, https://doi.org/10.1016/0032-3861(94)90953-9.Search in Google Scholar
Moore, A.M. (2014). Nerve transfers to restore upper extremity function: a paradigm shift. Front. Neurol. 5: 40, https://doi.org/10.3389/fneur.2014.00040.Search in Google Scholar PubMed PubMed Central
Moore, A.M., Ray, W.Z., Chenard, K.E., Tung, T., and Mackinnon, S.E. (2009). Nerve allotransplantation as it pertains to composite tissue transplantation. Hand 4: 239–244, https://doi.org/10.1007/s11552-009-9183-x.Search in Google Scholar PubMed PubMed Central
Moore, M.J., Friedman, J.A., Lewellyn, E.B., Mantila, S.M., Krych, A.J., Ameenuddin, S., Knight, A.M., Lu, L., Currier, B.L., Spinner, R.J., et al.. (2006). Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27: 419–429, https://doi.org/10.1016/j.biomaterials.2005.07.045.Search in Google Scholar PubMed
Moucharafieh, R.C., Badra, M.I., Boulos, K.A., Mansour, J.I., Daher, J.C., Wardani, H.M., Abd El Nour, H.G., Sayde, E.G., and Nehme, A.H. (2020). Nerve transfers in the upper extremity: a review. Injury 51: 2804–2810, https://doi.org/10.1016/j.injury.2020.04.015.Search in Google Scholar PubMed
Muangsanit, P., Day, A., Dimiou, S., Ataç, A.F., Kayal, C., Park, H., Nazhat, S.N., and Phillips, J.B. (2020). Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J. Neural Eng. 17: 046036, https://doi.org/10.1088/1741-2552/abaa9c.Search in Google Scholar PubMed
Muheremu, A. and Ao, Q. (2015). Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. Biomed. Res. Int. 2015, Article ID 237507, https://doi.org/10.1155/2015/237507.Search in Google Scholar PubMed PubMed Central
Ni, H.-C., Tseng, T.-C., Chen, J.-R., Hsu, S., and Chiu, M. (2013). Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap. Biofabrication 5: 035010, https://doi.org/10.1088/1758-5082/5/3/035010.Search in Google Scholar PubMed
Nicholls, K. and Furness, N.D. (2019). Peripheral nerve compression syndromes of the upper limb. Surgery 37: 288–293, https://doi.org/10.1016/j.mpsur.2019.02.011.Search in Google Scholar
Nix, W.A. and Hopf, H.C. (1983). Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 272: 21–25, https://doi.org/10.1016/0006-8993(83)90360-8.Search in Google Scholar PubMed
Norkus, T., Norkus, M., and Ramanauskas, T. (2005). Donor, recipient and nerve grafts in brachial plexus reconstruction: anatomical and technical features for facilitating the exposure. Surg. Radiol. Anat. 27: 524–530, https://doi.org/10.1007/s00276-005-0024-5.Search in Google Scholar PubMed
O’Gara, T., Urban, W., Polishchuk, D., Pierre-Louis, A., and Stewart, M. (2006). Continuous stimulation of transected distal nerves fails to prolong action potential propagation. Clin. Orthop. Relat. Res. 447: 209–213, https://doi.org/10.1097/01.blo.0000203481.11797.0f.Search in Google Scholar PubMed
Panahi-Joo, Y., Karkhaneh, A., Nourinia, A., Abd-Emami, B., Negahdari, B., Renaud, P., and Bonakdar, S. (2016). Design and fabrication of a nanofibrous polycaprolactone tubular nerve guide for peripheral nerve tissue engineering using a two-pole electrospinning system. Biomed. Mater. 11: 025017, https://doi.org/10.1088/1748-6041/11/2/025017.Search in Google Scholar PubMed
Panseri, S., Cunha, C., Lowery, J., Del Carro, U., Taraballi, F., Amadio, S., Vescovi, A., and Gelain, F. (2008). Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8: 39, https://doi.org/10.1186/1472-6750-8-39.Search in Google Scholar PubMed PubMed Central
Pertici, V., Martrou, G., Gigmes, D., and Trimaille, T. (2018). Synthetic polymer-based electrospun fibers: biofunctionalization strategies and recent advances in tissue engineering, drug delivery and diagnostics. Curr. Med. Chem. 25: 2385–2400, https://doi.org/10.2174/0929867325666171129133120.Search in Google Scholar PubMed
Pires, L.R., Guarino, V., Oliveira, M.J., Ribeiro, C.C., Barbosa, M.A., Ambrosio, L., and Pêgo, A.P. (2016). Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration. J. Tissue Eng. Regener. Med. 10: E154–E166, https://doi.org/10.1002/term.1792.Search in Google Scholar PubMed
Qian, Y., Cheng, Y., Cai, J., Zhao, X., Ouyang, Y., Yuan, W.-E., and Fan, C. (2019). Advances in electrical and magnetic stimulation on nerve regeneration. Regen. Med. 14: 969–979, https://doi.org/10.2217/rme-2018-0079.Search in Google Scholar PubMed
Quigley, A.F., Bulluss, K.J., Kyratzis, I.L.B., Gilmore, K., Mysore, T., Schirmer, K.S.U., Kennedy, E.L., O’Shea, M., Truong, Y.B., Edwards, S.L., et al.. (2013). Engineering a multimodal nerve conduit for repair of injured peripheral nerve. J. Neural Eng. 10: 016008, https://doi.org/10.1088/1741-2560/10/1/016008.Search in Google Scholar PubMed
Ray, W.Z. and Mackinnon, S.E. (2010). Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp. Neurol. 223: 77–85, https://doi.org/10.1016/j.expneurol.2009.03.031.Search in Google Scholar PubMed PubMed Central
Regas, I., Loisel, F., Haight, H., Menu, G., Obert, L., and Pluvy, I. (2020). Functionalized nerve conduits for peripheral nerve regeneration: a literature review. Hand Surg. Rehabil. 39: 343–351, https://doi.org/10.1016/j.hansur.2020.05.007.Search in Google Scholar PubMed
Rochkind, S. (2009). Phototherapy in peripheral nerve regeneration: from basic science to clinical study. Neurosurg. Focus 26: E8, https://doi.org/10.3171/foc.2009.26.2.e8.Search in Google Scholar
Schugens, Ch., Maquet, V., Grandfils, Ch., Jerome, R., and Teyssie, Ph. (1996). Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J. Biomed. Mater. Res. 30: 449–461, https://doi.org/10.1002/(sici)1097-4636(199604)30:4<449::aid-jbm3>3.0.co;2-p.10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-PSearch in Google Scholar
Seif, S., Planz, V., and Windbergs, M. (2017). Delivery of therapeutic proteins using electrospun fibers—recent developments and current challenges. Arch. Pharm. 350: 1700077, https://doi.org/10.1002/ardp.201700077.Search in Google Scholar
Senger, J.B., Rabey, K.N., Morhart, M.J., Chan, K.M., and Webber, C.A. (2020). Conditioning electrical stimulation accelerates regeneration in nerve transfers. Ann. Neurol 88: 363–374, https://doi.org/10.1002/ana.25796.Search in Google Scholar
Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials. Prog. Polym. Sci. 36: 1254–1276, https://doi.org/10.1016/j.progpolymsci.2011.05.003.Search in Google Scholar
Stenberg, L., Stößel, M., Ronchi, G., Geuna, S., Yin, Y., Mommert, S., Mårtensson, L., Metzen, J., Grothe, C., Dahlin, L.B., et al.. (2017). Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides. BMC Neurosci. 18: 53, https://doi.org/10.1186/s12868-017-0374-z.Search in Google Scholar
Sultana, N. and Wang, M. (2008). Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J. Mater. Sci.: Mater. Med. 19: 2555–2561, https://doi.org/10.1007/s10856-007-3214-3.Search in Google Scholar
Taylor, C.A., Braza, D., Rice, J.B., and Dillingham, T. (2008). The incidence of peripheral nerve injury in extremity trauma. Am. J. Phys. Med. Rehab. 87: 381–385, https://doi.org/10.1097/phm.0b013e31815e6370.Search in Google Scholar
Udupa, K., Bhattacharya, A., and Chen, R. (2022). Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur. J. Paediatr. Neurol 36: 69–77, https://doi.org/10.1016/j.ejpn.2021.12.004.Search in Google Scholar
Vijayavenkataraman, S. (2020). Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 106: 54–69, https://doi.org/10.1016/j.actbio.2020.02.003.Search in Google Scholar
Vijayavenkataraman, S., Thaharah, S., Zhang, S., Lu, W.F., and Fuh, J.Y.H. (2019a). Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair. Mater. Des. 162: 171–184, https://doi.org/10.1016/j.matdes.2018.11.044.Search in Google Scholar
Vijayavenkataraman, S., Thaharah, S., Zhang, S., Lu, W.F., and Fuh, J.Y.H. (2019b). 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair. Artif. Organs 43: 515–523, https://doi.org/10.1111/aor.13360.Search in Google Scholar PubMed
Vijayavenkataraman, S., Zhang, S., Thaharah, S., Sriram, G., Lu, W.F., and Fuh, J.Y.H. (2018). Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers 10: 753, https://doi.org/10.3390/polym10070753.Search in Google Scholar PubMed PubMed Central
Wakao, S., Hayashi, T., Kitada, M., Kohama, M., Matsue, D., Teramoto, N., Ose, T., Itokazu, Y., Koshino, K., Watabe, H., et al.. (2010). Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp. Neurol. 223: 537–547, https://doi.org/10.1016/j.expneurol.2010.01.022.Search in Google Scholar PubMed
Walker, J.L., Kryscio, R., Smith, J., Pilla, A., and Sisken, B.F. (2007). Electromagnetic field treatment of nerve crush injury in a rat model: effect of signal configuration on functional recovery. Bioelectromagnetics 28: 256–263, https://doi.org/10.1002/bem.20302.Search in Google Scholar PubMed
Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., and Gilbert, R.J. (2008). Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 6: 016001, https://doi.org/10.1088/1741-2560/6/1/016001.Search in Google Scholar PubMed
Wang, S., Wan, A.C., Xu, X., Gao, S., Mao, H.-Q., Leong, K.W., and Yu, H. (2001). A new nerve guide conduit material composed of a biodegradable poly (phosphoester). Biomaterials 22: 1157–1169, https://doi.org/10.1016/s0142-9612(00)00356-2.Search in Google Scholar PubMed
Wang, Y., Gu, X., Kong, Y., Feng, Q., and Yang, Y. (2015). Electrospun and woven silk fibroin/poly(lactic-co-glycolic acid) nerve guidance conduits for repairing peripheral nerve injury. Neural Regen. Res. 10: 1635–1642, https://doi.org/10.4103/1673-5374.167763.Search in Google Scholar PubMed PubMed Central
Wang, Y., Kong, Y., Zhao, Y., Feng, Q., Wu, Y., Tang, X., Gu, X., and Yang, Y. (2016). Electrospun, reinforcing network-containing, silk fibroin-based nerve guidance conduits for peripheral nerve repair. J. Biomater. Tissue Eng. 6: 53–60, https://doi.org/10.1166/jbt.2016.1417.Search in Google Scholar
Wang, Y.-X., Bai, J.-Z., Lyu, Z., Zhang, G.-H., and Huo, X.-L. (2022). Oscillating field stimulation promotes axon regeneration and locomotor recovery after spinal cord injury. Neural Regen. Res. 17: 1318, https://doi.org/10.4103/1673-5374.327349.Search in Google Scholar PubMed PubMed Central
Wei, N. and Chen, J. (2021). Repetitive transcranial magnetic stimulation for alzheimer’s disease based on apolipoprotein e genotyping: protocol for a randomized controlled study. Front. Aging Neurosci. 13: 758765, https://doi.org/10.3389/fnagi.2021.758765.Search in Google Scholar PubMed PubMed Central
Willand, M.P., Nguyen, M.-A., Borschel, G.H., and Gordon, T. (2016). Electrical stimulation to promote peripheral nerve regeneration. Neurorehabilit. Neural Repair. 30: 490–496, https://doi.org/10.1177/1545968315604399.Search in Google Scholar PubMed
Wrobel, S., Serra, S.C., Ribeiro-Samy, S., Sousa, N., Heimann, C., Barwig, C., Grothe, C., Salgado, A.J., and Haastert-Talini, K. (2014). In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng., Part A 20: 2339–2349, https://doi.org/10.1089/ten.tea.2013.0621.Search in Google Scholar PubMed PubMed Central
Xie, J., MacEwan, M.R., Liu, W., Jesuraj, N., Li, X., Hunter, D., and Xia, Y. (2014). Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces 6: 9472–9480, https://doi.org/10.1021/am5018557.Search in Google Scholar PubMed PubMed Central
Ye, K., Kuang, H., You, Z., Morsi, Y., and Mo, X. (2019). Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 11: 182, https://doi.org/10.3390/pharmaceutics11040182.Search in Google Scholar PubMed PubMed Central
Yi, S., Xu, L., and Gu, X. (2019). Scaffolds for peripheral nerve repair and reconstruction. Exp. Neurol. 319: 112761, https://doi.org/10.1016/j.expneurol.2018.05.016.Search in Google Scholar PubMed
Yucel, D., Kose, G.T., and Hasirci, V. (2010). Polyester based nerve guidance conduit design. Biomaterials 31: 1596–1603, https://doi.org/10.1016/j.biomaterials.2009.11.013.Search in Google Scholar PubMed
Zarrintaj, P., Zangene, E., Manouchehri, S., Amirabad, L.M., Baheiraei, N., Hadjighasem, M.R., Farokhi, M., Ganjali, M.R., Walker, B.W., Saeb, M.R., et al.. (2020). Conductive biomaterials as nerve conduits: recent advances and future challenges. Appl. Mater. Today 20: 100784, https://doi.org/10.1016/j.apmt.2020.100784.Search in Google Scholar
Zheng, F., Li, R., He, Q., Koral, K., Tao, J., Fan, L., Xiang, R., Ma, J., Wang, N., Yin, Y., et al.. (2020). The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Mater. Sci. Eng., C 109: 110560, https://doi.org/10.1016/j.msec.2019.110560.Search in Google Scholar PubMed
Zhu, W., George, J.K., Sorger, V.J., and Zhang, L.G. (2017). 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication 9: 025002, https://doi.org/10.1088/1758-5090/aa6999.Search in Google Scholar PubMed
Zhu, W., Tringale, K.R., Woller, S.A., You, S., Johnson, S., Shen, H., Schimelman, J., Whitney, M., Steinauer, J., Xu, W., et al.. (2018). Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater. Today 21: 951–959, https://doi.org/10.1016/j.mattod.2018.04.001.Search in Google Scholar PubMed PubMed Central
Zyss, T. (2008). Magnetotherapy. Neuroendocrinol. Lett. 29: 161–201.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework
- A systematic review and meta-analysis of the preclinical and clinical results of low-field magnetic stimulation in cognitive disorders
- Research advancements on nerve guide conduits for nerve injury repair
- From nasal respiration to brain dynamic
- Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia
- Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence
- Functional alterations in overweight/obesity: focusing on the reward and executive control network
Articles in the same Issue
- Frontmatter
- The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework
- A systematic review and meta-analysis of the preclinical and clinical results of low-field magnetic stimulation in cognitive disorders
- Research advancements on nerve guide conduits for nerve injury repair
- From nasal respiration to brain dynamic
- Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia
- Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence
- Functional alterations in overweight/obesity: focusing on the reward and executive control network