Startseite From nasal respiration to brain dynamic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

From nasal respiration to brain dynamic

  • Payam Shahsavar , Sepideh Ghazvineh und Mohammad Reza Raoufy EMAIL logo
Veröffentlicht/Copyright: 5. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.


Corresponding author: Mohammad Reza Raoufy, Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran; and Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran, E-mail:
Payam Shahsavar and Sepideh Ghazvineh contributed equally to this work.
  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by Faculty of Medical Sciences, Tarbiat Modares University.

  5. Data availability: Not applicable.

References

Adrian, E.D. (1942). Olfactory reactions in the brain of the hedgehog. J. Physiol. 100: 459, https://doi.org/10.1113/jphysiol.1942.sp003955.Suche in Google Scholar PubMed PubMed Central

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N., Habel, U., Schneider, F., and Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl.) 210: 343–352, https://doi.org/10.1007/s00429-005-0025-5.Suche in Google Scholar PubMed

Anand, K.S. and Dhikav, V. (2012). Hippocampus in health and disease: an overview. Ann. Indian Acad. Neurol. 15: 239, https://doi.org/10.4103/0972-2327.104323.Suche in Google Scholar PubMed PubMed Central

Arshamian, A., Iravani, B., Majid, A., and Lundström, J.N. (2018). Respiration modulates olfactory memory consolidation in humans. J. Neurosci. 38: 10286–10294, https://doi.org/10.1523/jneurosci.3360-17.2018.Suche in Google Scholar

Bagur, S., Lefort, J.M., Lacroix, M.M., de Lavilléon, G., Herry, C., Chouvaeff, M., Billand, C., Geoffroy, H., and Benchenane, K. (2021). Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12: 2605, https://doi.org/10.1038/s41467-021-22798-6.Suche in Google Scholar PubMed PubMed Central

Bhattarai, J.P., Etyemez, S., Jaaro-Peled, H., Janke, E., Tolosa, U.D.L., Kamiya, A., Gottfried, J.A., Sawa, A., and Ma, M. (2022). Olfactory modulation of the medial prefrontal cortex circuitry: implications for social cognition. Semin. Cell Dev. Biol. 129: 31–39, https://doi.org/10.1016/j.semcdb.2021.03.022.Suche in Google Scholar PubMed PubMed Central

Biskamp, J., Bartos, M., and Sauer, J.-F. (2017). Organization of prefrontal network activity by respiration-related oscillations. Sci. Rep. 7: 1–11, https://doi.org/10.1038/srep45508.Suche in Google Scholar PubMed PubMed Central

Buchanan, T.W., Tranel, D., and Adolphs, R. (2003). A specific role for the human amygdala in olfactory memory. Learn. Mem. 10: 319–325, https://doi.org/10.1101/lm.62303.Suche in Google Scholar PubMed PubMed Central

Carey, R.M., Verhagen, J.V., Wesson, D.W., Pírez, N., and Wachowiak, M. (2009). Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 101: 1073–1088, https://doi.org/10.1152/jn.90902.2008.Suche in Google Scholar PubMed PubMed Central

Cavelli, M., Castro‐Zaballa, S., Gonzalez, J., Rojas‐Líbano, D., Rubido, N., Velásquez, N., and Torterolo, P. (2020). Nasal respiration entrains neocortical long‐range gamma coherence during wakefulness. Eur. J. Neurosci. 51: 1463–1477, https://doi.org/10.1111/ejn.14560.Suche in Google Scholar PubMed

Chen, Y.-N., Kostka, J.K., Bitzenhofer, S.H., and Hanganu-Opatz, I.L. (2023). Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr. Biol. 33: 4353–4366, https://doi.org/10.1016/j.cub.2023.08.072.Suche in Google Scholar PubMed PubMed Central

Chi, V.N., Müller, C., Wolfenstetter, T., Yanovsky, Y., Draguhn, A., Tort, A.B., and Brankačk, J. (2016). Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J. Neurosci. 36: 162–177, https://doi.org/10.1523/jneurosci.2848-15.2016.Suche in Google Scholar PubMed PubMed Central

Cragg, B. (1960). Responses of the hippocampus to stimulation of the olfactory bulb and of various afferent nerves in five mammals. Exp. Neurol. 2: 547–572, https://doi.org/10.1016/0014-4886(60)90031-5.Suche in Google Scholar PubMed

Dehdar, K., Salimi, M., and Raoufy, M.R. (2022). Allergen disrupts amygdala-respiration coupling. Respir. Physiol. Neurobiol. 297: 103835, https://doi.org/10.1016/j.resp.2021.103835.Suche in Google Scholar PubMed

Dejean, C., Courtin, J., Karalis, N., Chaudun, F., Wurtz, H., Bienvenu, T.C., and Herry, C. (2016). Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535: 420–424, https://doi.org/10.1038/nature18630.Suche in Google Scholar PubMed

De Luca, P., Marra, P., La Mantia, I., Salzano, F.A., Camaioni, A., and Di Stadio, A. (2022). Entorhinal cortex and persistent olfactory loss in COVID-19 patients: a neuroanatomical hypothesis. Comment on Fiorentino et al. Correlations between persistent olfactory and semantic memory disorders after SARS-CoV-2 infection. Brain Sci. 2022, 12, 714. Brain Sci. 12, 850.10.3390/brainsci12070850Suche in Google Scholar PubMed PubMed Central

Fiorentino, J., Payne, M., Cancian, E., Plonka, A., Dumas, L.-É., Chirio, D., Demonchy, É., Risso, K., Askenazy-Gittard, F., Guevara, N., et al.. (2022). Correlations between persistent olfactory and semantic memory disorders after SARS-CoV-2 infection. Brain Sci. 12: 714, https://doi.org/10.3390/brainsci12060714.Suche in Google Scholar PubMed PubMed Central

Folschweiller, S. and Sauer, J.-F. (2021). Respiration-driven brain oscillations in emotional cognition. Front. Neural Circuits. 15: 761812, https://doi.org/10.3389/fncir.2021.761812.Suche in Google Scholar PubMed PubMed Central

Folschweiller, S. and Sauer, J.-F. (2023). Behavioral state-dependent modulation of prefrontal cortex activity by respiration. J. Neurosci. 43: 4795–4807, https://doi.org/10.1523/jneurosci.2075-22.2023.Suche in Google Scholar PubMed PubMed Central

Fontanini, A. and Bower, J.M. (2005). Variable coupling between olfactory system activity and respiration in ketamine/xylazine anesthetized rats. J. Neurophysiol. 93: 3573–3581, https://doi.org/10.1152/jn.01320.2004.Suche in Google Scholar PubMed

Fontanini, A., Spano, P., and Bower, J.M. (2003). Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23: 7993–8001, https://doi.org/10.1523/jneurosci.23-22-07993.2003.Suche in Google Scholar

Fujisawa, S. and Buzsáki, G. (2011). A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72: 153–165, https://doi.org/10.1016/j.neuron.2011.08.018.Suche in Google Scholar PubMed PubMed Central

Ghazvineh, S., Salimi, M., Dehghan, S., Asemi‐Rad, A., Dehdar, K., Salimi, A., Jamaati, H., and Raoufy, M.R. (2023). Stimulating olfactory epithelium mitigates mechanical ventilation‐induced hippocampal inflammation and apoptosis. Hippocampus 33: 880–885, https://doi.org/10.1002/hipo.23523.Suche in Google Scholar PubMed

Ghazvineh, S., Salimi, M., Nazari, M., Garousi, M., Tabasi, F., Dehdar, K., Salimi, A., Jamaati, H., Mirnajafi-Zadeh, J., Arabzadeh, E., et al.. (2021). Rhythmic air-puff into nasal cavity modulates activity across multiple brain areas: a non-invasive brain stimulation method to reduce ventilator-induced memory impairment. Respir. Physiol. Neurobiol. 287: 103627, https://doi.org/10.1016/j.resp.2021.103627.Suche in Google Scholar PubMed

Girin, B., Juventin, M., Garcia, S., Lefèvre, L., Amat, C., Fourcaud-Trocmé, N., and Buonviso, N. (2021). The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci. Rep. 11: 7044, https://doi.org/10.1038/s41598-021-86525-3.Suche in Google Scholar PubMed PubMed Central

González, J., Cavelli, M., Mondino, A., Castro-Zaballa, S., Brankačk, J., Draguhn, A., Torterolo, P., and Tort, A.B. (2022). Breathing modulates gamma synchronization across species. Pflug. Arch. Eur. J. Phy. 475: 49–63, https://doi.org/10.1007/s00424-022-02753-0.Suche in Google Scholar PubMed

Gonzalez, J., Torterolo, P., and Tort, A.B. (2023). Mechanisms and functions of respiration-driven gamma oscillations in the primary olfactory cortex. eLife 12: e83044, https://doi.org/10.7554/elife.83044.Suche in Google Scholar PubMed PubMed Central

Gretenkord, S., Kostka, J.K., Hartung, H., Watznauer, K., Fleck, D., Minier-Toribio, A., Spehr, M., and Hanganu-Opatz, I.L. (2019). Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLoS Biol. 17: e2006994, https://doi.org/10.1371/journal.pbio.2006994.Suche in Google Scholar PubMed PubMed Central

Grosmaitre, X., Santarelli, L.C., Tan, J., Luo, M., and Ma, M. (2007). Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10: 348–354, https://doi.org/10.1038/nn1856.Suche in Google Scholar PubMed PubMed Central

Guise, K.G. and Shapiro, M.L. (2017). Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 94: 183–192, https://doi.org/10.1016/j.neuron.2017.03.011.Suche in Google Scholar PubMed PubMed Central

Habets, A., Da Silva, F.L., and Mollevanger, W. (1980). An olfactory input to the hippocampus of the cat: field potential analysis. Brain Res. 182: 47–64, https://doi.org/10.1016/0006-8993(80)90829-x.Suche in Google Scholar PubMed

Hammer, M., Schwale, C., Brankačk, J., Draguhn, A., and Tort, A.B. (2021). Theta-gamma coupling during REM sleep depends on breathing rate. Sleep 44: zsab189, https://doi.org/10.1093/sleep/zsab189.Suche in Google Scholar PubMed

Heck, D.H., Kozma, R., and Kay, L.M. (2019). The rhythm of memory: how breathing shapes memory function. J. Neurophysiol. 122: 563–571, https://doi.org/10.1152/jn.00200.2019.Suche in Google Scholar PubMed PubMed Central

Helfrich, R.F. and Knight, R.T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20: 916–930, https://doi.org/10.1016/j.tics.2016.09.007.Suche in Google Scholar PubMed PubMed Central

Herrero, J.L., Khuvis, S., Yeagle, E., Cerf, M., and Mehta, A.D. (2018). Breathing above the brain stem: volitional control and attentional modulation in humans. J. Neurophysiol. 119: 145–159, https://doi.org/10.1152/jn.00551.2017.Suche in Google Scholar PubMed PubMed Central

Hudry, J., Ryvlin, P., Royet, J.-P., and Mauguière, F. (2001). Odorants elicit evoked potentials in the human amygdala. Cereb. Cortex 11: 619–627, https://doi.org/10.1093/cercor/11.7.619.Suche in Google Scholar PubMed

Jung, F., Witte, V., Yanovsky, Y., Klumpp, M., Brankačk, J., Tort, A.B., and Draguhn, A. (2022). Differential modulation of parietal cortex activity by respiration and θ oscillations. J. Neurophysiol. 127: 801–817, https://doi.org/10.1152/jn.00376.2021.Suche in Google Scholar PubMed

Karalis, N., Dejean, C., Chaudun, F., Khoder, S., Rozeske, R.R., Wurtz, H., Bagur, S., Benchenane, K., Sirota, A., Courtin, J., et al.. (2016). 4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nat. Neurosci. 19: 605–612, https://doi.org/10.1038/nn.4251.Suche in Google Scholar PubMed PubMed Central

Karalis, N. and Sirota, A. (2022). Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13: 467, https://doi.org/10.1038/s41467-022-28090-5.Suche in Google Scholar PubMed PubMed Central

Kiernan, J. (2012). Anatomy of the temporal lobe. Epilepsy. Res. Treat. 2012: 176157, https://doi.org/10.1155/2012/176157.Suche in Google Scholar PubMed PubMed Central

Kluger, D.S., Forster, C., Abbasi, O., Chalas, N., Villringer, A., and Gross, J. (2023). Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat. Commun. 14: 4699, https://doi.org/10.1038/s41467-023-40250-9.Suche in Google Scholar PubMed PubMed Central

Kluger, D.S. and Gross, J. (2021). Respiration modulates oscillatory neural network activity at rest. PLoS Biol. 19: e3001457, https://doi.org/10.1371/journal.pbio.3001457.Suche in Google Scholar PubMed PubMed Central

Liu, Y., McAfee, S.S., and Heck, D.H. (2017). Hippocampal sharp-wave ripples in awake mice are entrained by respiration. Sci. Rep. 7: 1–9, https://doi.org/10.1038/s41598-017-09511-8.Suche in Google Scholar PubMed PubMed Central

Lockmann, A.L., Laplagne, D.A., Leao, R.N., and Tort, A.B. (2016). A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J. Neurosci. 36: 5338–5352, https://doi.org/10.1523/jneurosci.3452-15.2016.Suche in Google Scholar PubMed PubMed Central

Lockmann, A.L., Laplagne, D.A., and Tort, A.B. (2018). Olfactory bulb drives respiration‐coupled beta oscillations in the rat hippocampus. Eur. J. Neurosci. 48: 2663–2673, https://doi.org/10.1111/ejn.13665.Suche in Google Scholar PubMed

Loureiro, M., Achargui, R., Flakowski, J., Van Zessen, R., Stefanelli, T., Pascoli, V., and Lüscher, C. (2019). Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex. Science 364: 991–995, https://doi.org/10.1126/science.aaw5842.Suche in Google Scholar PubMed

Moberly, A.H., Schreck, M., Bhattarai, J.P., Zweifel, L.S., Luo, W., and Ma, M. (2018). Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat. Commun. 9: 1–10, https://doi.org/10.1038/s41467-018-03988-1.Suche in Google Scholar PubMed PubMed Central

Murphy, C. (2019). Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 15: 11–24, https://doi.org/10.1038/s41582-018-0097-5.Suche in Google Scholar PubMed

Nash, J.D. and Newberg, A. (2013). Toward a unifying taxonomy and definition for meditation. Front. Psychol. 4: 806, https://doi.org/10.3389/fpsyg.2013.00806.Suche in Google Scholar PubMed PubMed Central

Onimaru, H. and Homma, I. (2007). Spontaneous oscillatory burst activity in the piriform–amygdala region and its relation to in vitro respiratory activity in newborn rats. Neuroscience 144: 387–394, https://doi.org/10.1016/j.neuroscience.2006.09.033.Suche in Google Scholar PubMed

Pfurtscheller, G., Kaminski, M., J. Blinowska, K., Rassler, B., Schwarz, G., and Klimesch, W. (2023). Respiration-entrained brain oscillations in healthy fMRI participants with high anxiety. Sci. Rep. 13: 2380, https://doi.org/10.1038/s41598-023-29482-3.Suche in Google Scholar PubMed PubMed Central

Pouliot, S. and Jones-Gotman, M. (2008). Medial temporal-lobe damage and memory for emotionally arousing odors. Neuropsychologia 46: 1124–1134, https://doi.org/10.1016/j.neuropsychologia.2007.10.017.Suche in Google Scholar PubMed

Price, J.L. (2003). Comparative aspects of amygdala connectivity. Ann. N. Y. Acad. Sci. 985: 50–58, https://doi.org/10.1111/j.1749-6632.2003.tb07070.x.Suche in Google Scholar PubMed

Sakano, H. (2020). Developmental regulation of olfactory circuit formation in mice. Dev. Growth Differ. 62: 199–213, https://doi.org/10.1111/dgd.12657.Suche in Google Scholar PubMed PubMed Central

Salimi, M., Ayene, F., Parsazadegan, T., Nazari, M., Jamali, Y., and Raoufy, M.R. (2023). Nasal airflow promotes default mode network activity. Respir. Physiol. Neurobiol. 307: 103981, https://doi.org/10.1016/j.resp.2022.103981.Suche in Google Scholar PubMed

Salimi, M., Javadi, A.-H., Nazari, M., Bamdad, S., Tabasi, F., Parsazadegan, T., Ayene, F., Karimian, M., Gholami-Mahtaj, L., Shadnia, S., et al.. (2022a). Nasal air puff promotes default mode network activity in mechanically ventilated comatose patients: a noninvasive brain stimulation approach. Neuromodulation 25: 1351–1363, https://doi.org/10.1016/j.neurom.2021.11.003.Suche in Google Scholar PubMed

Salimi, M., Tabasi, F., Abdolsamadi, M., Dehghan, S., Dehdar, K., Nazari, M., Javan, M., Mirnajafi-Zadeh, J., and Raoufy, M.R. (2022b). Disrupted connectivity in the olfactory bulb-entorhinal cortex-dorsal hippocampus circuit is associated with recognition memory deficit in Alzheimer’s disease model. Sci. Rep. 12: 4394, https://doi.org/10.1038/s41598-022-08528-y.Suche in Google Scholar PubMed PubMed Central

Salimi, M., Tabasi, F., Nazari, M., Ghazvineh, S., Salimi, A., Jamaati, H., and Raoufy, M.R. (2021). The olfactory bulb modulates entorhinal cortex oscillations during spatial working memory. J. Physiol. Sci. 71: 1–9, https://doi.org/10.1186/s12576-021-00805-1.Suche in Google Scholar PubMed PubMed Central

Schwerdtfeger, W.K., Buhl, E.H., and Germroth, P. (1990). Disynaptic olfactory input to the hippocampus mediated by stellate cells in the entorhinal cortex. J. Comp. Neurol. 292: 163–177, https://doi.org/10.1002/cne.902920202.Suche in Google Scholar PubMed

Sheriff, A., Pandolfi, G., Nguyen, V.S., and Kay, L.M. (2021). Long-range respiratory and theta oscillation networks depend on spatial sensory context. J. Neurosci. 41: 9957–9970, https://doi.org/10.1523/jneurosci.0719-21.2021.Suche in Google Scholar

Tort, A.B., Hammer, M., Zhang, J., Brankačk, J., and Draguhn, A. (2021). Temporal relations between cortical network oscillations and breathing frequency during REM sleep. J. Neurosci. 41: 5229–5242, https://doi.org/10.1523/jneurosci.3067-20.2021.Suche in Google Scholar PubMed PubMed Central

Tort, A.B., Ponsel, S., Jessberger, J., Yanovsky, Y., Brankačk, J., and Draguhn, A. (2018). Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci. Rep. 8: 6432, https://doi.org/10.1038/s41598-018-24629-z.Suche in Google Scholar PubMed PubMed Central

Vanderwolf, C. (1992). Hippocampal activity, olfaction, and sniffing: an olfactory input to the dentate gyrus. Brain Res. 593: 197–208, https://doi.org/10.1016/0006-8993(92)91308-2.Suche in Google Scholar PubMed

Vaughan, D.N. and Jackson, G.D. (2014). The piriform cortex and human focal epilepsy. Front. Neurol. 5: 259, https://doi.org/10.3389/fneur.2014.00259.Suche in Google Scholar PubMed PubMed Central

Wang, L., Li, X., Chen, F., Liu, Q., and Xu, F. (2023). Organizational principles of the centrifugal projections to the olfactory bulb. Int. J. Mol. Sci. 24: 4579, https://doi.org/10.3390/ijms24054579.Suche in Google Scholar PubMed PubMed Central

Wang, L., Zhang, Z., Chen, J., Manyande, A., Haddad, R., Liu, Q., and Xu, F. (2020). Cell-type-specific whole-brain direct inputs to the anterior and posterior piriform cortex. Front. Neural Circuits. 14: 4, https://doi.org/10.3389/fncir.2020.00004.Suche in Google Scholar PubMed PubMed Central

Way, J.S. (1960). An oscillographic study of afferent connections to the hippocampus in the cat (Felis domesticus). Electroencephalogr. Clin. Neurophysiol. 14: 78–89, https://doi.org/10.1016/0013-4694(62)90010-x.Suche in Google Scholar PubMed

Wilson, R. and Steward, O. (1978). Polysynaptic activation of the dentate gyrus of the hippocampal formation: an olfactory input via the lateral entorhinal cortex. Exp. Brain Res. 33: 523–534, https://doi.org/10.1007/bf00235572.Suche in Google Scholar

Yanovsky, Y., Ciatipis, M., Draguhn, A., Tort, A.B., and Brankačk, J. (2014). Slow oscillations in the mouse hippocampus entrained by nasal respiration. J. Neurosci. 34: 5949–5964, https://doi.org/10.1523/jneurosci.5287-13.2014.Suche in Google Scholar PubMed PubMed Central

Zaccaro, A., Piarulli, A., Melosini, L., Menicucci, D., and Gemignani, A. (2022). Neural correlates of non-ordinary states of consciousness in pranayama practitioners: the role of slow nasal breathing. Front. Syst. Neurosci. 16: 803904, https://doi.org/10.3389/fnsys.2022.803904.Suche in Google Scholar PubMed PubMed Central

Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., and Gottfried, J.A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36: 12448–12467, https://doi.org/10.1523/jneurosci.2586-16.2016.Suche in Google Scholar PubMed PubMed Central

Zhong, W., Ciatipis, M., Wolfenstetter, T., Jessberger, J., Müller, C., Ponsel, S., Yanovsky, Y., Brankačk, J., Tort, A.B., and Draguhn, A. (2017). Selective entrainment of gamma subbands by different slow network oscillations. Proc. Natl. Acad. Sci. U. S. A. 114: 4519–4524, https://doi.org/10.1073/pnas.1617249114.Suche in Google Scholar PubMed PubMed Central

Zhou, G., Olofsson, J.K., Koubeissi, M.Z., Menelaou, G., Rosenow, J., Schuele, S.U., Xu, P., Voss, J.L., Lane, G., and Zelano, C. (2021). Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog. Neurobiol. 201: 102027, https://doi.org/10.1016/j.pneurobio.2021.102027.Suche in Google Scholar PubMed PubMed Central

Zhu, Y., Ye, Y., Zhou, C., Sun, S., Zhang, J., Zhao, Z., Sun, T., Li, J., Yang, J., Li, W., et al.. (2021). Effect of sensory deprivation of nasal respiratory on behavior of C57BL/6J mice. Brain Sci. 11: 1626, https://doi.org/10.3390/brainsci11121626.Suche in Google Scholar PubMed PubMed Central

Received: 2023-12-11
Accepted: 2024-03-25
Published Online: 2024-04-05
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2023-0152/html
Button zum nach oben scrollen