Startseite Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications

  • Meghnath Sen EMAIL logo , Rakesh Shukla , Raman K. Mishra , Nimai Pathak , Vilippalil Sathian und Probal Chaudhury
Veröffentlicht/Copyright: 12. März 2024

Abstract

The manuscript reports the synthesis of Dy3+ incorporated lithium magnesium borate glass by melt quenching technique. FTIR study revealed the presence of both BO3 as well as tetrahedral BO4 units through their characteristic frequencies. Photoluminescence (PL) study of unirradiated samples confirmed the presence of Dy dopant in the ‘+3’ oxidation states from the characteristic emissions at 482, 578, 666 and 716 nm corresponding to 4F9/26H15/2, 4F9/26H13/2 and 4F9/26H11/2, 4F9/26H9/2 transitions, respectively. Thermal neutron and gamma irradiated PL emission and lifetime characteristics were discussed in details based on the different defect centers. Thermal neutron irradiated TL study showed that the material has a broad and single dosimetry glow peak at about 450 K which showed high fading due to low temperature peak. TL based neutron sensitivity of LMB: Dy3+ was found to be about 37.4 times less than that of standard TLD-100 (LiF: Mg, Ti) powder. The net TL response from about 3 to 83 mSv of neutron dose was found to be linear (Adj. R2 = 0.9994) which is one of the most desirable properties for dosimetry applications. In addition, the TL trap parameters were evaluated using both deconvolution of TL glow curve and peak shape method as suggested by Chen which were found to be matching with each other.


Corresponding author: Meghnath Sen, Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; and Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India, E-mail:

Funding source: BARC, Department of Atomic Energy, India

Acknowledgments

The authors are highly thankful to Dr. A. K Tyagi, Director Chemistry Group for his guidance and motivation for the work throughout. The authors also thank Dr. D. K. Aswal, Director HS&EG, BARC for providing constant motivation and support for the research works. Special thanks to Dr. Kaustava Bhattacharyya, ChD, BARC and Dr. Kishor Gavhane, Research Associate, RSSD for their help during measurements of FTIR and TL neutron sensitivity of the material, respectively. Special thanks to Dr. Shraddha Desai and Dr. Mala Rao, SSPD, BARC for their kind support and help during the thermal neutron irradiation in GT laboratory, Dhruva reactor, Mumbai.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The research is funded by BARC, Department of Atomic Energy, India.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Faraji, S., Feizi, S., Dodaran, A. A. S., Alipour, A., Ashtari, P., Sharbatdaran, M. Beryllium oxide nanoparticles: synthesis, characterization, and thermoluminescence evaluation for gamma radiation detection. Radiochim. Acta 2021, 109, 841; https://doi.org/10.1515/ract-2021-1081.Suche in Google Scholar

2. Bos, A. J. J. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials (Basel) 2017, 10, 1357; https://doi.org/10.3390/ma10121357.Suche in Google Scholar PubMed PubMed Central

3. Horowitz (INVITED), Y. S. LiF:Mg,Ti versus LiF:Mg,Cu,P: the competition heats up. Radiat. Protect. Dosim. 1993, 47, 135; https://doi.org/10.1093/oxfordjournals.rpd.a081718.Suche in Google Scholar

4. Lee, J. I., Pradhan, A. S., Kim, J. L., Kim, B. H., Yim, K. S. Response of 6LiF:Mg,Cu,Si and 7LiF:Mg,Cu,Si TLD pairs to the neutrons and photon mixtures. J. Nucl. Sci. Technol. 2008, 45, 233; https://doi.org/10.1080/00223131.2008.10875830.Suche in Google Scholar

5. Sen, M., Shukla, R., Pathak, N., Bhattacharyya, K., Sathian, V., Chaudhury, P., Kulkarni, M. S., Tyagi, A. K. Development of LiMgBO3:Tb3+ as a new generation material for thermoluminescence based personnel neutron dosimetry. Mater. Adv. 2021, 2, 3405; https://doi.org/10.1039/d0ma00737d.Suche in Google Scholar

6. Sen, M., Shukla, R., Sathian, V., Kulkarni, M. S., Tyagi, A. K. Thermoluminescence based personnel neutron dosimetry study of LiMgBO3:Dy3+. Ceram. Int. 2020, 46, 20236; https://doi.org/10.1016/j.ceramint.2020.05.105.Suche in Google Scholar

7. Sen, M., Shukla, R., Pathak, N., Ali, K., Sathian, V., Tyagi, A. K. Synthesis, characterization, and thermoluminescence-based high-dose neutron and gamma dosimetry study of Al5BO9:Mn, Li nanophosphor. J. Am. Ceram. Soc. 2022, 105, 6693; https://doi.org/10.1111/jace.18639.Suche in Google Scholar

8. Hussein, E. M. A., Gafar, S. M. Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications. Radiochim. Acta 2022, 110, 913; https://doi.org/10.1515/ract-2022-0029.Suche in Google Scholar

9. Hashim, S., Mhareb, M. H. A., Ghoshal, S. K., Alajerami, Y. S. M., Bradley, D. A., Saripan, M. I., Tamchek, N., Alzimami, K. Luminescence characteristics of Li2O–MgO–B2O3 doped with Dy3+ as a solid TL detector. Radiat. Phys. Chem. 2015, 116, 138; https://doi.org/10.1016/j.radphyschem.2015.04.007.Suche in Google Scholar

10. Prokić, M. Dosimetric characteristics of Li2B4O7:Cu,Ag,P solid TL detectors. Radiat. Protect. Dosim. 2002, 100, 265; https://doi.org/10.1093/oxfordjournals.rpd.a005863.Suche in Google Scholar PubMed

11. Pradhan, A. S. Thermoluminescence dosimetry and its applications. Radiat. Protect. Dosim. 1981, 1, 153.Suche in Google Scholar

12. Soga, N., Hirao, K., Yoshimoto, M., Yamamoto, H. Effects of densification on fluorescence spectra and glass structure of Eu3+-doped borate glasses. J. Appl. Phys. 1988, 63, 4451; https://doi.org/10.1063/1.340165.Suche in Google Scholar

13. Kaczmarek, S. M. Li2B4O7 glasses doped with Cr, Co, Eu and Dy. Opt. Mater. 2002, 19, 189; https://doi.org/10.1016/s0925-3467(01)00218-x.Suche in Google Scholar

14. Alajerami, Y. S. M., Hashim, S., Wan Hassan, W. M. S., Termizi Ramli, A., Kasim, A. Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions. Phys. B Condens. Matter 2012, 407, 2398; https://doi.org/10.1016/j.physb.2012.03.033.Suche in Google Scholar

15. Konijnendijk, W. L., Stevels, J. M. The structure of borate glasses studied by Raman scattering. J. Non-Cryst. Solids 1975, 18, 307; https://doi.org/10.1016/0022-3093(75)90137-4.Suche in Google Scholar

16. Mhareb, M. H. A., Hashim, S., Ghoshal, S. K., Alajerami, Y. S. M., Bqoor, M. J., Hamdan, A. I., Saleh, M. A., Karim, M. K. B. A. Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 2016, 177, 366; https://doi.org/10.1016/j.jlumin.2016.05.002.Suche in Google Scholar

17. Mhareb, M. H. A., Hashim, S., Ghoshal, S. K., Alajerami, Y. S. M., Saleh, M. A., Azizan, S. A. B., Razak, N. A. B., Abdul Karim, M. K. B. Influences of dysprosium and phosphorous oxides co-doping on thermoluminescence features and kinetic parameters of lithium magnesium borate glass. J. Radioanal. Nucl. Chem. 2015, 305, 469; https://doi.org/10.1007/s10967-015-3984-x.Suche in Google Scholar

18. Mhareb, M. H. A., Hashim, S., Ghoshal, S. K., Alajerami, Y. S. M., Saleh, M. A., Dawaud, R. S., Razak, N. A. B., Azizan, S. A. B. Impact of Nd3+ ions on physical and optical properties of lithium magnesium borate glass. Opt. Mater. 2014, 37, 391; https://doi.org/10.1016/j.optmat.2014.06.033.Suche in Google Scholar

19. Reduan, S. A., Hashim, S., Ibrahim, Z., Alajerami, Y. S. M., Mhareb, M. H. A., Maqableh, M., Dawaud, R. S. E. S., Tamchek, N. Physical and optical properties of Li2O–MgO–B2O3 doped with Sm3+. J. Mol. Struct. 2014, 1060, 6; https://doi.org/10.1016/j.molstruc.2013.12.052.Suche in Google Scholar

20. Das, P., Pathak, N., Sanyal, B., Dash, S., Kadam, R. M. Exploring Na0.1Sr9.8Eu0.1(PO4)6F2 both as a potential phosphor material and host for radioactive waste immobilization. J. Alloys Compd. 2019, 810, 151906; https://doi.org/10.1016/j.jallcom.2019.151906.Suche in Google Scholar

21. Gautam, C., Yadav, A. K., Singh, A. K. A review on infrared spectroscopy of borate glasses with effects of different additives. Int. Sch. Res. Notices 2012, 2012, e428497; https://doi.org/10.5402/2012/428497.Suche in Google Scholar

22. Kamitsos, E. I., Karakassides, M. A., Chryssikos, G. D. Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure. J. Phys. Chem. 1987, 91, 1073; https://doi.org/10.1021/j100289a014.Suche in Google Scholar

23. Kaur, S., Deopa, N., Prasad, A., Bajaj, R., Rao, A. S. Intense green emission from Tb3+ ions doped zinc lead alumino borate glasses for laser and w-LEDs applications. Opt. Mater. 2018, 84, 318; https://doi.org/10.1016/j.optmat.2018.07.020.Suche in Google Scholar

24. Wang, T., Hu, Y., Chen, L., Wang, X., He, M. An intense single-component warm-white-light Sr3Lu(PO4)3:Dy3+ phosphor for white UV-LEDs. J. Mater. Sci. Mater. Electron. 2016, 27, 13235; https://doi.org/10.1007/s10854-016-5470-9.Suche in Google Scholar

25. Zhang, Z. W., Song, A. J., Ma, M. Z., Zhang, X. Y., Yue, Y., Liu, R. P. A novel white emission in Ca8MgBi(PO4)7:Dy3+ single-phase full-color phosphor. J. Alloys Compd. 2014, 601, 231; https://doi.org/10.1016/j.jallcom.2014.02.165.Suche in Google Scholar

26. Shrivastava, R., Kaur, J., Dubey, V. White light emission by Dy3+ doped phosphor matrices: a short review. J. Fluoresc. 2016, 26, 105; https://doi.org/10.1007/s10895-015-1689-8.Suche in Google Scholar PubMed

27. Uma, V., Marimuthu, K., Muralidharan, G. Influence of modifier cations on the spectroscopic properties of Dy3+ doped telluroborate glasses for white light applications. J. Fluoresc. 2016, 26, 2281; https://doi.org/10.1007/s10895-016-1924-y.Suche in Google Scholar PubMed

28. Ge, S., Zhang, L., Wang, P., Fang, Y. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Sci. Rep. 2016, 6, 27307; https://doi.org/10.1038/srep27307.Suche in Google Scholar PubMed PubMed Central

29. Das, P., Pathak, N., Modak, P., Modak, B. Multifunctional Ca10(PO4)6F2 as a host for radioactive waste immobilization: Am3+/Eu3+ ions distribution, phosphor characteristics and radiation induced changes. J. Hazard. Mater. 2021, 411, 125025; https://doi.org/10.1016/j.jhazmat.2020.125025.Suche in Google Scholar PubMed

30. Pathak, N., Das, P., Chundawat, B., Modak, P., Modak, B. Unraveling U6+, Am3+&Eu3+ ion’s distribution in Ca10(PO4)6F2 for radioactive waste immobilization and the associated U6+ → Eu3+energy transfer dynamics for tunable emission characteristics. J. Hazard. Mater. 2022, 423, 126980; https://doi.org/10.1016/j.jhazmat.2021.126980.Suche in Google Scholar PubMed

31. Hashim, S., Omar, R. S., Ghoshal, S. K. Realization of dysprosium doped lithium magnesium borate glass based TLD subjected to 1–100 Gy photon beam irradiations. Radiat. Phys. Chem. 2019, 163, 1; https://doi.org/10.1016/j.radphyschem.2019.05.016.Suche in Google Scholar

32. Chen, R. Glow curves with general order kinetics. J. Electrochem. Soc. 1969, 116, 1254; https://doi.org/10.1149/1.2412291.Suche in Google Scholar

33. Mhareb, M. H. A., Hashim, S., Ghoshal, S. K., Alajerami, Y. S. M., Saleh, M. A., Razak, N. A. B., Azizan, S. A. B. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide. Luminescence 2015, 30, 1330; https://doi.org/10.1002/bio.2902.Suche in Google Scholar PubMed

Received: 2023-08-01
Accepted: 2024-02-23
Published Online: 2024-03-12
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. NUCAR-2023: Foreword
  4. Research Articles
  5. Theoretical analysis of light and heavy-ion induced reactions: production of medically relevant 97Ru
  6. Excitation functions of alpha-particle induced nuclear reactions on nat Sn
  7. Non-destructive assay of plutonium in absence of gamma-ray spectrometry
  8. Catalytic destruction of oxalate in the supernatant stream generated during plutonium reconversion process
  9. Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
  10. Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
  11. Zirconium sponge production: an integrated approach for chemical characterization of process intermediates using ICP-OES
  12. Determination of 10B/11B in boric acid and B4C using LA-ICPMS
  13. Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
  14. Nanocrystalline Ce(OH)4-based materials: ruthenium selective adsorbent for highly alkaline radioactive liquid waste
  15. Production and radiochemical separation of 68Ge from irradiated Ga–Ni alloy target in 30 MeV cyclotron
  16. Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
  17. Total chemical synthesis of PSMA-617: an API for prostate cancer endotherapeutic applications
  18. Rapid screening technique for gross α and gross β estimations in aqueous samples during radiation emergency
  19. Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0209/html
Button zum nach oben scrollen