Home Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
Article
Licensed
Unlicensed Requires Authentication

Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques

  • Annadasankar Roy , Uday Kumar Sinha , Bharatkumar Hathi , Sitangshu Chatterjee , Diksha Pant , Hemant Mohokar , Ajay Jaryal , Harish Jagat Pant , Dipankar Saha , Ratan Jain and Tirumalesh Keesari ORCID logo EMAIL logo
Published/Copyright: February 14, 2024

Abstract

Increasing population, food demands and climatic stressors pose an imminent threat to groundwater sustainability in regional aquifer systems globally. Limited availability of surface water and erratic/uncertain rainfall necessitates preservation of groundwater resources, which form reliable fresh water reserves in most of the arid regions. Bhuj Sandstone aquifer is one such fresh groundwater systems in Western India catering the domestic/irrigational needs for over 2 million population. Rapid groundwater depletion in this area warranted a mandatory conservation of groundwater resources for future sustainability. Nuclear techniques using 3H and 14C provide estimates of groundwater age that help in planning sustainable groundwater management. In this study, sustainability of deep groundwater was assessed using environmental radioactive isotopes (3H, 14C). Results indicate that 14C activity of the groundwater samples varies from 26 to 73.6 pMC (percent modern carbon). Considering the various biases and uncertainties present, multiple correction models were applied to obtain representative groundwater ages by incorporating stable (13C) isotope and hydrogeochemical data. The corrected and representative ages are found to range from 5.8 to 8.6 ka BP (thousand years before present). From the study it can be inferred that central Bhuj aquifer hosts paleo-groundwater while the western part is recently recharged. Therefore, over-exploitation of deep groundwater in central Bhuj aquifer may further lower the water levels and this would have long-term impact on the socio-economic development of Kutch region.


Corresponding author: Tirumalesh Keesari, Isotope Hydrology Section, Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, 400 085, Mumbai, India; and Homi Bhabha National Institute, Mumbai 400 094, India, E-mail:

Acknowledgments

The authors would like to express their sincere gratitude to Dr. S. Kannan, former Director, Radiochemistry and Isotope Group (RC&IG), Bhabha Atomic Research Centre (BARC), Mumbai for his invaluable support. The authors would also like to extend their appreciation to Mr. S. N. Kamble for his assistance during field sampling.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Castellazzi, P., Martel, R., Rivera, A., Huang, J., Pavlic, G., Calderhead, A. I., Chaussard, E., Garfias, J., Salas, J. Groundwater Depletion in Central Mexico: Use of GRACE and InSAR to Support Water Resources Management. Water Resour. Manage. 2016, 52, 5985; https://doi.org/10.1002/2015wr018211.Search in Google Scholar

2. Steward, D. R., Allen, A. J. Peak Groundwater Depletion in the High Plains Aquifer, Projections from 1930 to 2110. Agric. Water Manage. 2016, 170, 36; https://doi.org/10.1016/j.agwat.2015.10.003.Search in Google Scholar

3. Priestley, S. C., Meredith, K. T., Treble, P. C., Cendón, D. I., Griffiths, A. D., Hollins, S. E., Baker, A., Pigois, J. P. A 35 ka Record of Groundwater Recharge in South-West Australia Using Stable Water Isotopes. Sci. Total Environ. 2020, 717, 135105; https://doi.org/10.1016/j.scitotenv.2019.135105.Search in Google Scholar PubMed

4. Keesari, T., Sinha, U. K., Saha, D., Dwivedi, S. N., Shukla, R. R., Mohokar, H., Roy, A. Isotope Systematics of Groundwater in Central Parts of Indo-Gangetic Plain Aquifer System, India – Implications on Deep Groundwater Sustainability and Security. Sci. Total Environ. 2021, 789, 147860; https://doi.org/10.1016/j.scitotenv.2021.147860.Search in Google Scholar PubMed

5. Roy, A., Keesari, T., Pant, D., Rai, G., Sinha, U. K., Mohokar, H., Jaryal, A., Sharma, D. A. Unravelling 30 ka Recharge History of an Intensely Exploited Multi-Tier Aquifer System in North West India through Isotopic Tracers – Implications on Deep Groundwater Sustainability. Sci. Total Environ. 2022, 807, 151401; https://doi.org/10.1016/j.scitotenv.2021.151401.Search in Google Scholar PubMed

6. Rodell, M., Velicogna, I., Famiglietti, J. S. Satellite-based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999; https://doi.org/10.1038/nature08238.Search in Google Scholar PubMed

7. Saha, D., Gor, N. A Prolific Aquifer System Is in Peril in Arid Kachchh Region of India. Groundwater Sust. Dev. 2020, 11, 1–10, 100394; https://doi.org/10.1016/j.gsd.2020.100394.Search in Google Scholar

8. Kulongoski, J. T., Hilton, D. R., Selaolo, E. T. Climate Variability in the Botswana Kalahari from the Late Pleistocene to the Present Day. Geophys. Res. Lett. 2004, 31, 1; https://doi.org/10.1029/2003gl019238.Search in Google Scholar

9. Abouelmagd, A., Sultan, M., Sturchio, N. C., Soliman, F., Rashed, M., Ahmed, M., Kehew, A. E., Milewski, A., Chouinard, K. Paleoclimate Record in the Nubian Sandstone Aquifer, Sinai Peninsula, Egypt. Quaternary Res. 2014, 81, 158; https://doi.org/10.1016/j.yqres.2013.10.017.Search in Google Scholar

10. Dutton, A. R. Groundwater Isotopic Evidence for Paleorecharge in U.S. High Plain Aquifers. Quaternary Res. 1995, 43, 221; https://doi.org/10.1006/qres.1995.1022.Search in Google Scholar

11. Awaleh, M. O., Boschetti, T., Soubaneh, Y. D., Kim, Y., Baudron, P., Kawalieh, A. D., Ahmed, M. M., Daoud, M. A., Dabar, O. A., Kadieh, I. H., Adiyaman, Ö., Elmi, S. A., Chirdon, M. A. Geochemical, Multi-Isotopic Studies and Geothermal Potential Evaluation of the Complex Djibouti Volcanic Aquifer (Republic of Djibouti). Appl. Geochem. 2018, 97, 301; https://doi.org/10.1016/j.apgeochem.2018.07.019.Search in Google Scholar

12. Awaleh, M. O., Boschetti, T., Adaneh, A. E., Daoud, M. A., Ahmed, M. M., Dabar, O. A., Soubaneh, Y. D., Kawalieh, A. D., Kadieh, I. H. Hydrochemistry and Multiisotope Study of the Waters from Hanlé-Gaggadégrabens (Republic of Djibouti, East African Rift System): A Low-Enthalpy Geothermal Resource from a Transboundary Aquifer. Geothermics 2020, 86, 1–19, 101805; https://doi.org/10.1016/j.geothermics.2020.101805.Search in Google Scholar

13. Wieser, M., Aeschbach-Hertig, W., Schneider, T., Deshpande, R. D., Gupta, S. K., A Temperature and Monsoon Record Derived from Environmental Tracers in the Groundwater of Northwest India. In Conference Proceedings Series of IAEA on Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Monaco, Vol. 1, 2011, pp. 7–14.Search in Google Scholar

14. Sinha, U. K., Navada, S. V. Application of Isotope Techniques in Groundwater Recharge Studies in Arid Western Rajasthan, India: Some Case Studies. Geol. Soc. Spec. Publ. 2008, 288, 121; https://doi.org/10.1144/sp288.10.Search in Google Scholar

15. Biswas, S. K. Regional Tectonic Framework, Structure and Evolution of the Western Marginal Basins of India. Tectonophysics 1987, 135, 307; https://doi.org/10.1016/0040-1951(87)90115-6.Search in Google Scholar

16. Merh, S. S. Neogene-Quaternary Sequence in Gujarat: A Review. J. Geol. Soc. India 1993, 41, 259.Search in Google Scholar

17. Merh, S. S., Ed. Geology of Gujarat; Geological Society of India: Bangalore, 1995; pp. 1–222.Search in Google Scholar

18. Thakkar, M. G., Maurya, D. M., Raj, R., Chamyal, L. S. Quaternary Tectonic History and Terrain Evolution of the Area Around Bhuj, Mainland Kachchh, Western India. J. Geol. Soc. India 1999, 53, 601.Search in Google Scholar

19. Parag, S. S. Tectono-structural Attributes of Central Kachchh Mainland with Special Emphasis on Active Tectonics and Palaeoseismicity. J. Geol. Soc. India 2002, 60, 114.Search in Google Scholar

20. Maurya, P., Kumari, R., Mukherjee, S. Hydrochemistry in Integration with Stable Isotopes (δ18O and δD) to Assess Seawater Intrusion in Coastal Aquifers of Kachchh District, Gujarat, India. J. Geochem. Explor. 2019, 196, 42; https://doi.org/10.1016/j.gexplo.2018.09.013.Search in Google Scholar

21. Pande, D., Kulkarni, K. M., Muralidharan, R., Panchal, P. K., Rao, S. S., Ravi, K. Hydrogeochemical Exploration for Uranium—A Case Study of Kutch Basin, Gujarat, India. In Proceeding of International Symposium on Applied Geochemistry, Hyderabad, India, 1991, pp. 61–66.Search in Google Scholar

22. Keesari, T., Kulkarni, U., Deodhar, A., Ramanjaneyulu, P. S., Sanjukta, A., Kumar, U. Geochemical Characterization of Groundwater from an Arid Region in India. Environ. Earth Sci. 2013, 71, 4869; https://doi.org/10.1007/s12665-013-2878-x.Search in Google Scholar

23. Gupta, S. K., Deshpande, R., Agarwal, M., Raval, B. Origin of High Fluoride in Groundwater in the North Gujarat-Cambay Region, India. Hydrogeol. J. 2005, 13, 596; https://doi.org/10.1007/s10040-004-0389-2.Search in Google Scholar

24. Prajapati, J. R., Raol, B. V. Studies on Ground Water Quality of Patan City, North Gujarat, India. Nat. Environ. Pollut. Technol. 2008, 7, 27.Search in Google Scholar

25. Rina, K., Datta, P. S., Singh, C. K., Mukherjee, S. Determining the Genetic Origin of Nitrate Contamination in Aquifers of Northern Gujarat, India. Environ. Earth Sci. 2014, 71, 1711; https://doi.org/10.1007/s12665-013-2575-9.Search in Google Scholar

26. Goyal, R. K., Sharma, M. Groundwater Quality Assessment of arid Northern Gujarat (India). Ann. Arid Zone 2015, 54, 27.Search in Google Scholar

27. Sharma, M. K., Jain, C. K., Rao, G. T., Gurunadha, V. V. S. G. Modelling of Lindane Transport in Groundwater of Metropolitan City Vadodara, Gujarat, India. Environ. Monit. Assess. 2015, 187, 295; https://doi.org/10.1007/s10661-015-4522-6.Search in Google Scholar PubMed

28. Kumar, P., Singh, C. K., Saraswat, C., Mishra, B., Sharma, T. Evaluation of Aqueous Geochemistry of Fluoride Enriched Groundwater: A Case Study of the Patan District, Gujarat, Western India. Water Sci. 2017, 31, 215; https://doi.org/10.1016/j.wsj.2017.05.002.Search in Google Scholar

29. Gupta, S. K., Deshpande, R. D., Bhattacharya, S. K., Jani, R. A. Groundwater δ18O and δ2H from Central Indian Peninsula: Influence of the Arabian Sea and Bay of Bengal Branches of the Summer Monsoon. J. Hydrol. 2005, 303, 38; https://doi.org/10.1016/j.jhydrol.2004.08.016.Search in Google Scholar

30. Agarwal, M., Gupta, S. K., Deshpande, R., Yadava, M. Helium, Radon and Radiocarbon Studies on a Regional Aquifer System of the North Gujarat–Cambay Region, India. Chem. Geol. 2006, 228, 209; https://doi.org/10.1016/j.chemgeo.2005.10.007.Search in Google Scholar

31. Gupta, S. K., Bhandari, N., Thakkar, P. S., Rengarajan, R. On the Origin of the Artesian Groundwater and Escaping Gas at Narveri after the 2001 Bhuj Earthquake. Curr. Sci. 2002, 82, 463.Search in Google Scholar

32. Keesari, T., Sinha, U. K. Palaeo-seawater of Kutch Region, Gujarat, India. Curr. Sci. 2019, 116, 1407; https://doi.org/10.18520/cs/v116/i8/1407-1410.Search in Google Scholar

33. Clark, I. D., Fritz, P., Eds. Environmental Isotopes in Hydrogeology; Lewis Publishers: New York, 1997; pp. 1–343.Search in Google Scholar

34. Plummer, N. L., Prestemon, E. C., Parkhurst, D. L. An Interactive Code (NETPATH) for Modeling NET Geochemical Reactions along a Flow PATH, Version 20, Water-Resources Investigations Report 94-4169; USGS: Reston, Virginia, 1994; pp. 1–133.Search in Google Scholar

35. Plummer, L. N., Glynn, P. D., Eds. Isotope Methods for Dating Old Groundwater; IAEA: Austria, 2013; pp. 33–74.Search in Google Scholar

36. Jena, R., Damodara, L. N., Mehrotra, P., Kulshrestha, V. K., Meena, H. B., Dhokia, N., Jain, A. K., Krishnamurthy, G. Aquifer Map and Management Plan, Kachchh District, Gujarat State; Central Ground Water Board, West Central Region: Gujarat, India, 2022; pp. 1–85.Search in Google Scholar

37. Keesari, T., Chatterjee, S., Pant, D., Kumar, M., Sakhare, V., Sinha, U. K., Mohokar, H., Jaryal, A., Roy, A., Maitra, A. Dating of Hot Springs at Attri, Tarabalo and Athmalik Sites in Odisha, India Using Radiocarbon Technique. J. Radioanal. Nucl. Chem. 2019, 323, 1227; https://doi.org/10.1007/s10967-019-06867-1.Search in Google Scholar

38. Nair, A. R. Possibilities of Liquid Scintillation Counting for Tritium and Radio Carbon Measurements in Natural Water. In Proceedings of the Workshop on Isotope Hydrology; BARC: Mumbai, India, 1983, pp. 41–56.Search in Google Scholar

39. Johansson, B. Groundwater Dating by Means of Isotopes; Uppsala University: Sweden, 1980; pp. 1–49.Search in Google Scholar

40. Roy, A., Keesari, T., Mohokar, H., Pant, D., Sinha, U. K., Mendhekar, G. N. Geochemical Evolution of Groundwater in Hard-Rock Aquifers of South India Using Statistical and Modelling Techniques. Hydrolg. Sci. J. 2020, 65, 951; https://doi.org/10.1080/02626667.2019.1708914.Search in Google Scholar

41. Hounslow, A. W. Water Quality Data Analysis and Interpretation; CRC Press: Florida, 1995; pp. 20–417.Search in Google Scholar

42. Gargaud, M., Albarede, F., Arndt, N., Briones, C., Cleaves, J., Gounelle, M., Javaux, E., Pinti, D., Raymond, S., Eds. Chronological History of Life on Earth, Encyclopedia of Astrobiology; Springer: Berlin, Heidelberg, 2011; pp. 1831–1853.10.1007/978-3-642-11274-4_5072Search in Google Scholar

43. Rama, S. K. S., Bhatia, K. K. S., Bhism, K., Eds. Measurement of Radiocarbon in Natural Water Samples, Procedural Manual (ver.1.0) Measurement of Radiocarbon and Tritium in Waters and Cesium-137 & Lead-210 in Sediments; National Institute of Hydrology: Roorkee, India, 2002.Search in Google Scholar

44. Sinha, U. K. Application of Isotope Techniques to the Assessment of Aquifer System in Urban Centre, Ph.D. thesis, Mumbai University, 2012.Search in Google Scholar

45. Kumar, B., Han, L. F., Wassenaar, L. I., Klaus, P. M., Kainz, G. G., Hillegonds, D., Brummer, D., Ahmad, M., Belachew, D. L., Araguás, L., Aggarwal, P. A Compact Tritium Enrichment Unit for Large Sample Volumes with Automated Re-filling and Higher Enrichment Factor. Appl. Radiat. Isotopes 2016, 118, 80; https://doi.org/10.1016/j.apradiso.2016.07.018.Search in Google Scholar PubMed

46. Mohokar, H. V., Pant, D., Sinha, U. K., Joseph, T. B. Inter-comparison Test for the Determination of Low-Level Tritium Activities in Natural Waters for Age Dating Purposes. In Proceedings of First DAE-BRNS Symposium on Current Trends in Analytical Chemistry (CTAC-2015), Mumbai, India, 2015.Search in Google Scholar

47. Arun, B., Vijayalakshmi, I., Ramani, Y., Viswanathan, S., Jose, M. T., Baskaran, R., Venkatraman, B. Optimization of 14C LSC Measurement Using CO2 Absorption Technique. Radiochim. Acta 2019, 108, 297; https://doi.org/10.1515/ract-2018-3042.Search in Google Scholar

48. Bouhlassa, S., Ammary, B., Elyahyaoui, A. Environmental Tritium Measurements and Lumped Parameter Modelling in the Tafilalet Aquifer, South-East Morocco. Radiochim. Acta 2007, 95, 607; https://doi.org/10.1524/ract.2007.95.10.607.Search in Google Scholar

49. Szántó, Z., Svingor, É., Futó, I., Palcsu, L., Molnár, M., Rinyu, L. A Hydrochemical and Isotopic Case Study Around a Near Surface Radioactive Waste Disposal. Radiochim. Acta 2007, 95, 55; https://doi.org/10.1524/ract.2007.95.1.55.Search in Google Scholar

50. Lucas, L. L., Unterweger, M. P. Comprehensive Review and Critical of the Half-Life of Tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541; https://doi.org/10.6028/jres.105.043.Search in Google Scholar PubMed PubMed Central

51. Morgenstern, U., Taylor, C. B. Ultra Low-Level Tritium Measurement Using Electrolytic Enrichment and LSC. Isot. Environ. Healt. S. 2009, 45, 96; https://doi.org/10.1080/10256010902931194.Search in Google Scholar PubMed

52. Robertson, F. N. Radiocarbon Dating of Groundwater in a Confined Aquifer in Southeast Arizona. Radiocarbon 1992, 34, 664; https://doi.org/10.1017/s0033822200063955.Search in Google Scholar

53. Taylor, R. E. Radiocarbon Dating: Development of a Novel Method, Radiocarbon and Climate Change; Springer: Basel, 2016; pp. 21–44.10.1007/978-3-319-25643-6_2Search in Google Scholar

54. Nichols, A. L. Radioactive Decay Data: Powerful Aids in Medical Diagnosis and Therapy, Analytical Science and Other Applications. Radiochimic. Acta 2012, 100, 615; https://doi.org/10.1524/ract.2012.1959.Search in Google Scholar

55. Pearson, F. J. Use of C-13/C-12 Ratios to Correct Radiocarbon Ages of Material Diluted by Limestone. In Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating; Pullman: Washington DC, 1965, pp. 357–366.Search in Google Scholar

56. Roy, A., Keesari, T., Mohokar, H., Sinha, U. K., Bitra, S. Assessment of Groundwater Quality in Hard Rock Aquifer of Central Telangana State for Drinking and Agriculture Purposes. Appl. Water Sci. 2018, 8, 1; https://doi.org/10.1007/s13201-018-0761-3.Search in Google Scholar

57. WHO. Guidelines for Drinking Water Quality, World Health Organization, Geneva, 2008, pp. 1–133.Search in Google Scholar

58. Keesari, T., Sharma, D. A., Rishi, M. S., Pant, D., Mohokar, H. V., Jaryal, A. K., Sinha, U. K. Isotope Investigation on Groundwater Recharge and Dynamics in Shallow and Deep Alluvial Aquifers of Southwest Punjab. Appl. Radiat. Isot. 2017, 129, 163; https://doi.org/10.1016/j.apradiso.2017.07.022.Search in Google Scholar PubMed

59. Lapworth, D. J., MacDonald, A. M., Krishan, G., Rao, M. S., Gooddy, D. C., Darling, W. G. Groundwater Recharge and Age-Depth Profiles of Intensively Exploited Groundwater Resources in Northwest India. Geophys. Res. Lett. 2015, 42, 7554; https://doi.org/10.1002/2015gl065798.Search in Google Scholar

60. Lapworth, D. J., Krishan, G., Macdonald, A. M., Rao, M. S. Groundwater Quality in the Alluvial Aquifer System of Northwest India: New Evidence of the Extent of Anthropogenic and Geogenic Contamination. Sci. Total Environ. 2017, 599–600, 1433; https://doi.org/10.1016/j.scitotenv.2017.04.223.Search in Google Scholar PubMed

61. Lapworth, D. J., Zahid, A., Taylor, R. G., Burgess, W. G., Shamsudduha, M., Ahmed, K. M., Mukherjee, A., Gooddy, D. C., Chatterjee, D., MacDonald, A. M. Security of deep groundwater in the coastal Bengal basin revealed by tracers. Geophys. Res. Lett. 2018, 45, 8241; https://doi.org/10.1029/2018gl078640.Search in Google Scholar

62. Joshi, S. K., Rai, S. P., Sinha, R., Gupta, S., Densmore, A. L., Rawat, Y. S., Shekhar, S. Tracing Groundwater Recharge Sources in the Northwestern Indian Alluvial Aquifer Using Water Isotopes (δ18O, δ2H and 3H). J. Hydrol. 2018, 559, 835; https://doi.org/10.1016/j.jhydrol.2018.02.056.Search in Google Scholar

63. Vogel, J. C. Carbon-14 Dating of Groundwater. In Proceedings of Isotope Hydrology, IAEA Symposium 129, Vienna, Austria, 1970, pp. 225–239.Search in Google Scholar

64. Stuiver, M., Polach, H. A. Discussion: Reporting of 14C Data. Radiocarbon 1977, 19, 355; https://doi.org/10.1017/s0033822200003672.Search in Google Scholar

65. Vogel, J. C. Investigation of Groundwater Flow with Radiocarbon. In Proceedings of symposium on Isotopes in Hydrology; IAEA: Vienna, Austria, 1967; pp. 355–369.Search in Google Scholar

66. Tamers, M. A. Surface-Water Infiltration and Groundwater Movement in Arid Zones in Venezuela, Isotopes in Hydrology. Proceedings Series, Vol. 80; IAEA: Vienna, 1967.Search in Google Scholar

67. Eichinger, L. A. Contribution to the Interpretation of 14C Groundwater Ages Considering the Example of a Partially Confined Sandstone Aquifer. Radiocarbon 1983, 25, 347; https://doi.org/10.1017/s0033822200005634.Search in Google Scholar

68. Wang, T., Chen, J., Zhang, C., Zhan, L., Li, L. 14C-dating Model for Groundwater Affected by CO2 Inputs from Deep Underground Formations. Water Resour. Res. 2020, 56, 2; https://doi.org/10.1029/2019wr025155.Search in Google Scholar

Received: 2023-07-21
Accepted: 2023-12-23
Published Online: 2024-02-14
Published in Print: 2024-08-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. NUCAR-2023: Foreword
  4. Research Articles
  5. Theoretical analysis of light and heavy-ion induced reactions: production of medically relevant 97Ru
  6. Excitation functions of alpha-particle induced nuclear reactions on nat Sn
  7. Non-destructive assay of plutonium in absence of gamma-ray spectrometry
  8. Catalytic destruction of oxalate in the supernatant stream generated during plutonium reconversion process
  9. Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
  10. Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
  11. Zirconium sponge production: an integrated approach for chemical characterization of process intermediates using ICP-OES
  12. Determination of 10B/11B in boric acid and B4C using LA-ICPMS
  13. Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
  14. Nanocrystalline Ce(OH)4-based materials: ruthenium selective adsorbent for highly alkaline radioactive liquid waste
  15. Production and radiochemical separation of 68Ge from irradiated Ga–Ni alloy target in 30 MeV cyclotron
  16. Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
  17. Total chemical synthesis of PSMA-617: an API for prostate cancer endotherapeutic applications
  18. Rapid screening technique for gross α and gross β estimations in aqueous samples during radiation emergency
  19. Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0198/html
Scroll to top button