Home Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
Article
Licensed
Unlicensed Requires Authentication

Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route

  • Sourav Patra , Sachin Jadhav , Priyalata Shetty , Khajan Singh , Ardhi Rajeswari , K. V. Vimalnath , Avik Chakraborty , Rubel Chakravarty and Sudipta Chakraborty ORCID logo EMAIL logo
Published/Copyright: February 14, 2024

Abstract

Glomerular filtration rate (GFR) could be determined more accurately using renal positron emission tomography (PET) than conventional gamma imaging. Copper-64 [T½ = 12.7 h, Eβ+ (max) = 653 keV, β+ branching ratio = 17.8 %, 1346 keV γ-photon (0.54 %), EC (43.8 %), β emission (38.4 %)] in the form of its hydrophilic complex with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) is proposed as a potent formulation for renal PET imaging. A lyophilized kit was developed for formulation of ∼370 MBq dose of [64Cu]Cu–NOTA complex in a facile single step process using 64Cu produced by thermal neutron activation in a research reactor. The complex could be synthesized with >99 % yield and retained its integrity even when challenged by apoferritin. The rapid accumulation of [64Cu]Cu–NOTA in the kidney and clearance through urinary path was demonstrated using PET/CT imaging and ex vivo biodistribution study carried out in healthy Wistar rats to elucidate its effectiveness as a renal PET-imaging agent.


Corresponding author: Sudipta Chakraborty, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India, E-mail:

Funding source: Bhabha Atomic Research Centre

Award Identifier / Grant number: Unassigned

Acknowledgments

We would like to acknowledge Dr. S. Kannan, Former Director, Radiochemistry and Isotope Group (RC & IG), Bhabha Atomic Research Centre (BARC), Dr. P.K Mohapatra, Associate Director, RC & IG and Dr. Tapas Das, Head, Radiopharmaceuticals Division, BARC for their valuable support to this work.

  1. Research ethics: All animal experiments were performed as per the protocol approved by the Institutional Animal Ethics Committee of the Bhabha Atomic Research Centre.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Matsushita, K., Velde, M. V. D., Astor, B. C., Woodward, M., Levey, A. S., Jong, P. E. D., Coresh, J., Gansevoort, R. T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010, 375, 2073–2081; https://doi.org/10.1016/S0140-6736(10)60674-5.Search in Google Scholar PubMed PubMed Central

2. Linker, L. A., Schmid, C. H., Tighiouart, H., Eckfeldt, J. H., Feldman, H. I., Greene, T., Kusek, J. W., Manzi, J., Lente, F. V., Zhang, Y. L., Coresh, J., Levey, A. S. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29; https://doi.org/10.1056/nejmoa1114248.Search in Google Scholar

3. Soveri, I., Berg, U. B., Björk, J., Elinder, C. G., Grubb, A., Mejare, I., Sterner, G., Back, S. E. Measuring GFR: a systematic review. Am. J. Kidney. Dis. 2014, 64, 411–424; https://doi.org/10.1053/j.ajkd.2014.04.010.Search in Google Scholar PubMed

4. Chantler, C., Garnett, E. S., Parsons, V., Veall, N. Glomerular filtration rate measurement in man by the single injection methods using 51Cr-EDTA. Clin. Sci. 1969, 37, 169–180.Search in Google Scholar

5. Hofman, M. S., Hicks, R. J. Gallium-68 EDTA PET/CT for renal imaging. Semin. Nucl. Med. 2016, 46, 448–461; https://doi.org/10.1053/j.semnuclmed.2016.04.002.Search in Google Scholar PubMed

6. Ma, Y. C., Zuo, L., Zhang, C. L., Wang, M., Wang, R. F., Wang, H. Y. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. Nephrol. Dial. Transplant 2007, 22, 417–423; https://doi.org/10.1093/ndt/gfl603.Search in Google Scholar PubMed

7. Gandolpho, L., Heilberg, I., Monteiro, M., Schor, N. Unilateral hydronephrosis: DMSA and DTPA scan in renal stone formers. Urolithiasis 1994, 2, 671.10.1007/978-1-4615-2556-1_271Search in Google Scholar

8. Sobh, M., Neamatallah, A., Sheashaa, H., Akl, A., Osman, Y., Gad, H., Eletrby, M., Hegazy, A. Sobh formula: a new formula for estimation of creatinine clearance in healthy subjects and patients with chronic renal disease. Int. Urol. Nephrol. 2005, 37, 403–408; https://doi.org/10.1007/s11255-004-1262-x.Search in Google Scholar PubMed

9. Taylor, A. J., Eshima, D., Fritzberg, A. R., Christian, P. E., Kasina, S. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J. Nucl. Med. 1986, 27, 795–803.Search in Google Scholar

10. Bhowal, K., Bhattacharyya, S., Majumdar, A., Giri, C., Vanaja, R., Ramamoorthy, N., Ganguly, S., Sarkar, B. R., Debnath, M. C. Technetium-99m DTPA dimethyl ester: a renal function imaging agent. Comparative studies in animals with technetium-99m mercaptoacetyl triglycine and 131I-ortho-iodohippurate. Nucl. Med. Commun. 2003, 24, 583–595; https://doi.org/10.1097/00006231-200305000-00016.Search in Google Scholar PubMed

11. Lee, J. Y., Jeong, J. M., Kim, Y. J., Jeong, H. J., Lee, Y. S., Lee, D. S., Chung, J. K. Preparation of Ga-68-NOTA as a renal PET agent and feasibility tests in mice. Nucl. Med. Biol. 2014, 41, 210–215; https://doi.org/10.1016/j.nucmedbio.2013.11.005.Search in Google Scholar PubMed

12. Werner, R. A., Ordonez, A. A., Sanchez, B. J., Marcus, C., Lapa, C., Rowe, S. P., Pomper, M. G., Leal, J. P., Lodge, M. A., Javadi, M. S., Jain, S. K., Higuchi, T. Novel functional renal PET imaging with 18F-FDS in human subjects. Clin. Nucl. Med. 2019, 44, 410–411; https://doi.org/10.1097/rlu.0000000000002494.Search in Google Scholar

13. Ordonez, A. A., Weinstein, E. A., Bambarger, L. E., Saini, V., Chang, Y. S., DeMarco, V. P., Klunk, M. H., Urbanowski, M. E., Moulton, K. L., Murawski, A. M., Pokkali, S., Kalinda, A. S., Jain, S. K. A systematic approach for developing bacteria-specific imaging tracers. J. Nucl. Med. 2017, 8, 144–150; https://doi.org/10.2967/jnumed.116.181792.Search in Google Scholar PubMed PubMed Central

14. Werner, R. A., Pomper, M. G., Buck, A. K., Rowe, S. P., Higuchi, T. SPECT and PET radiotracers in renal imaging. Semin. Nucl. Med. 2022, 52, 406–418; https://doi.org/10.1053/j.semnuclmed.2021.12.003.Search in Google Scholar PubMed

15. Mirzaei, A., Jalilian, A. R., Aghanejad, A., Mazidi, M., Yousefnia, H., Shabani, G., Ardanehl, K., Geramifar, P., Beiki, D. Preparation and evaluation of 68Ga-ECC as a PET renal imaging agent. Nucl. Med. Mol. Imaging 2015, 49, 208–216; https://doi.org/10.1007/s13139-015-0323-7.Search in Google Scholar PubMed PubMed Central

16. Mao, H., Chen, L., Wu, W., Zhang, L., Li, X., Chen, Y., Huang, Z., Ou, S. Noninvasive assessment of renal fibrosis of chronic kidney disease in rats by [68Ga]Ga-FAPI-04 small animal PET/CT and biomarkers. Mol. Pharm. 2023, 20, 2715–2725; https://doi.org/10.1021/acs.molpharmaceut.3c00163.Search in Google Scholar PubMed

17. Ding, Y., Zhang, D., Wang, M., Zhang, L., Liu, Y., Deng, Y., Jiang, D., Liu, Y., Cao, W. Glomerular filtration rate calculation based on 68Ga-EDTA dynamic renal PET. Am. J. Nucl. Med. Mol. Imaging 2022, 12, 54.Search in Google Scholar

18. Allach, Y., Banda, A., Gemert, W. V., Groot, M. D., Derks, Y., Schilham, M., Hoepping, A., Perk, L., Gotthardt, M., Marcel Janssen, M., Nagarajah, J., Prive, B. M. An explorative study of the incidental high renal excretion of [18F] PSMA-1007 for prostate cancer PET/CT imaging. Cancers 2022, 14, 2076; https://doi.org/10.3390/cancers14092076.Search in Google Scholar PubMed PubMed Central

19. Chi, X., Yang, X., Li, G., Wu, H., Huang, J., Qi, Y., Tang, G. A comparative study of 18F-FAPI-42 and 18F-FDG PET/CT for evaluating acute kidney injury in cancer patients. Mol. Imaging Biol. 2023, 1.10.1007/s11307-023-01820-xSearch in Google Scholar PubMed

20. Chakravarty, R., Chakraborty, S., Dash, A. 64Cu2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol. Pharm. 2016, 13, 3601–3612; https://doi.org/10.1021/acs.molpharmaceut.6b00582.Search in Google Scholar PubMed

21. Qaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., Coenen, H. H. Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 2007, 95, 67–73; https://doi.org/10.1524/ract.2007.95.2.67.Search in Google Scholar

22. Szelecsenyi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575–580; https://doi.org/10.1016/0969-8043(93)90172-7.Search in Google Scholar

23. Szajek, L. P., Meyer, W., Plascjak, P., Eckelman, W. Semi-remote production of [64Cu]CuCl2 and preparation of high specific activity [64Cu]Cu-ATSM for PET studies. Radiochim. Acta 2005, 93, 239–244; https://doi.org/10.1524/ract.93.4.239.64070.Search in Google Scholar

24. Chakravarty, R., Shetty, P., Nair, K. V., Rajeswari, A., Jagadeesan, K., Sarma, H. D., Rangarajan, V., Krishnatry, R., Chakraborty, S. Reactor produced [64Cu] CuCl2 as a PET radiopharmaceutical for cancer imaging: from radiochemistry laboratory to nuclear medicine clinic. Ann. Nucl. Med. 2020, 34, 899–910; https://doi.org/10.1007/s12149-020-01522-2.Search in Google Scholar PubMed

25. Chakravarty, R., Chakraborty, S., Vimalnath, K., Shetty, P., Sarma, H. D., Hassan, P., Dash, A. 64CuCl2 produced by direct neutron activation route as a cost-effective probe for cancer imaging: the journey has begun. RSC Adv. 2015, 5, 91723–91733; https://doi.org/10.1039/c5ra17266g.Search in Google Scholar

26. Cai, Z., Anderson, C. J. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J. Labelled Comp. Radiopharm. 2014, 57, 224–230; https://doi.org/10.1002/jlcr.3165.Search in Google Scholar PubMed PubMed Central

27. Chakravarty, R., Chakraborty, S., Dash, A., Pillai, M. Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl. Med. Biol. 2013, 40, 197–205; https://doi.org/10.1016/j.nucmedbio.2012.11.001.Search in Google Scholar PubMed

28. Li, X., Du, K., Sun, J., Feng, F. Apoferritin as a carrier of Cu (II) diethyldithiocarbamate and biomedical application for glutathione-responsive combination chemotherapy. ACS Appl. Bio. Mater. 2019, 3, 654–663; https://doi.org/10.1021/acsabm.9b01014.Search in Google Scholar PubMed

29. Phan, L., Jessop, P. G. Switching the hydrophilicity of a solute. Green Chem. 2009, 11, 307–308; https://doi.org/10.1039/b821239b.Search in Google Scholar

30. Schott, H. Hydrophilic‐lipophilic balance, solubility parameter, and oil‐water partition coefficient as universal parameters of nonionic surfactants. J. Pharm. Sci. Res. 1995, 84, 1215–1222; https://doi.org/10.1002/jps.2600841014.Search in Google Scholar PubMed

31. Mukherjee, A., Bhatt, J., Shinto, A., Korde, A., Kumar, M., Kamaleshwaran, K., Joseph, J., Sarma, H. D., Dash, A. 68Ga-NOTA-ubiquicidin fragment for PET imaging of infection: from bench to bedside. J. Pharm. Biomed. Anal. 2018, 159, 245–251; https://doi.org/10.1016/j.jpba.2018.06.064.Search in Google Scholar PubMed

32. Taylor, A. T., Lipowska, M., Marzilli, L. G. 99mTc(CO)3(NTA): a 99mTc renal tracer with pharmacokinetic properties comparable to those of 131I-OIH in healthy volunteers. J. Nucl. Med. 2010, 51, 391–396; https://doi.org/10.2967/jnumed.109.070813.Search in Google Scholar PubMed PubMed Central

Received: 2023-07-21
Accepted: 2023-11-02
Published Online: 2024-02-14
Published in Print: 2024-08-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. NUCAR-2023: Foreword
  4. Research Articles
  5. Theoretical analysis of light and heavy-ion induced reactions: production of medically relevant 97Ru
  6. Excitation functions of alpha-particle induced nuclear reactions on nat Sn
  7. Non-destructive assay of plutonium in absence of gamma-ray spectrometry
  8. Catalytic destruction of oxalate in the supernatant stream generated during plutonium reconversion process
  9. Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
  10. Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
  11. Zirconium sponge production: an integrated approach for chemical characterization of process intermediates using ICP-OES
  12. Determination of 10B/11B in boric acid and B4C using LA-ICPMS
  13. Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
  14. Nanocrystalline Ce(OH)4-based materials: ruthenium selective adsorbent for highly alkaline radioactive liquid waste
  15. Production and radiochemical separation of 68Ge from irradiated Ga–Ni alloy target in 30 MeV cyclotron
  16. Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
  17. Total chemical synthesis of PSMA-617: an API for prostate cancer endotherapeutic applications
  18. Rapid screening technique for gross α and gross β estimations in aqueous samples during radiation emergency
  19. Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0206/html
Scroll to top button