Abstract
Synthesis of PSMA-617, a peptide based ligand used in the preparation of nuclear medicine, 177Lu-PSMA-617, for the treatment of prostate cancer, is demonstrated in 6 steps, starting from appropriately protected amino acid building blocks. A solution phase Boc-strategy was adopted for the synthesis of peptide, wherein deprotection of carbamate group using HCl (g), was employed as the key step. The synthesis furnished PSMA-617 in purity >99.5 % as confirmed by HPLC analysis. ESI-MS and NMR analysis supported the structural integrity of the compound. The synthesized ligand was radiolabelled using 177Lu to generate the desired radiopharmaceutical, 177Lu-PSMA-617, in radiochemical purity >98 %, as revealed by radio HPLC and TLC analysis. This establishes its potential as a nuclear medicine for therapeutic application.
Acknowledgments
KSAK thankfully acknowledge Prof. B. S Patro, Head, Bio-Organic Division, Prof. T. K. Ghanty, Group Director, Bio Science Group, BARC and former Group Directors (Prof. S. K. Nayak, Prof. V. P. Venugopalan, Prof. S. K. Ghosh) for their constant support and encouragement throughout the course of this activity. We are grateful to the support from National NMR Facility, TIFR, Mumbai. KSAK is highly thankful to Dr. M. B. Mallia, Radiopharmaceutical Division, BARC for his enthusiasm and support towards the program.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: None declared.
-
Data availability: The data can be obtained on request from the corresponding author.
References
1. Volkert, W. A., Hoffmann, T. J. Therapeutic radiopharmaceuticals. Chem. Rev. 1999, 99, 2269–2292; https://doi.org/10.1021/cr9804386.Search in Google Scholar PubMed
2. Sgouros, G., Bodei, L., McDevitt, M. R., Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. 2020, 19, 589–608; https://doi.org/10.1038/s41573-020-0073-9.Search in Google Scholar PubMed PubMed Central
3. Battal, H., Ozer, A. Y. Adverse reactions to radiopharmaceuticals: liver radiopharmaceuticals. Nucl. Med. Commun. 2021, 42, 352–359; https://doi.org/10.1097/mnm.0000000000001355.Search in Google Scholar PubMed
4. Meher, B. R., Agrawal, K., Gnanasegaran, G. Review of adverse reactions associated with the use of common diagnostic radiopharmaceuticals. Indian J. Nucl. Med. 2021, 36, 163–167; https://doi.org/10.4103/ijnm.ijnm_219_20.Search in Google Scholar PubMed PubMed Central
5. Kaur, T., Brooks, A. F., Liddell, K. M., Henderson, B. D., Hockley, B. G., Bohnen, N., Albin, R. L., Scott, P. J. H. Automated synthesis of 18F-BCPP-EF{2-tert-Butyl-4-Chloro-5-{6-[2-(2[18F]fluoroethoxy)-Ethoxy]-Pyridin-3-flmethoxy}-2H-Pyridazin-3-One for imaging of mitochondrial complex 1 in Parkinson’s disease. Front. Chem. 2022, 10, 878835; https://doi.org/10.3389/fchem.2022.878835.Search in Google Scholar PubMed PubMed Central
6. Kaur, T., Brooks, A. F., Lapsys, A., Desmond, T. J., Stauff, J., Arteaga, J., Winton, W. P., Scott, P. J. H. Synthesis and evaluation of a fluorine-18 radioligand for imaging huntingtin aggregates by positron emission tomographic imaging. Front. Neurosci. 2021, 15, 766176; https://doi.org/10.3389/fnins.2021.766176.Search in Google Scholar PubMed PubMed Central
7. Mullard, A. FDA approves first PSMA-targetted radiopharmaceutical. Nat. Rev. Drug Discov. 2022, 21, 327; https://doi.org/10.1038/d41573-022-00067-5.Search in Google Scholar PubMed
8. Grauesr, L. S., Lawler, K. D., Marignac, J. L., Marignac, J. L., Kumar, A., Goel, A. S., Wolfert, R. L. Identification, purification, and subcellular localization of prostate specific memberane antigen PSMA protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 1998, 58, 4787–4789.Search in Google Scholar
9. Schuster, D. M., Taleghani, P. A., Nieh, P. T., Master, V. A., Amzat, R., Savir-Baruch, B., Halkar, R. K., Fox, T., Osunkoya, A. O., Moreno, C. S., Nye, J. A., Yu, W., Fei, B., Wang, Z., Chen, Z., Goodman, M. M. Characterization of primary prostate carcinoma by anti-1-amino-2-[18F]-fluorocyclobutane-1-carboxylic acid (anti-3-[18F]-FACBC) uptake. Am. J. Nucl. Med. Mol. Imag. 2013, 3, 85–96.Search in Google Scholar
10. Wilkinson, S., Chodak, G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J. Urol. 2004, 172, 133–136; https://doi.org/10.1097/01.ju.0000132138.02846.08.Search in Google Scholar PubMed
11. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651; https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar
12. Okoye, N. C., Baumeister, J. E., Khosroshahi, F. N., Hennkens, H. M., Jurisson, S. S. Chelators and metal complex stability for radiopharmaceutical applications. Radiochim. Acta 2019, 107, 1087–1120; https://doi.org/10.1515/ract-2018-3090.Search in Google Scholar
13. US Food and Drug, Administration. FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer 2020. https://www.fda.gov/news-events/press-announcements/fda-approves-first-psma-targeted-pet-imaging-drug-men-prostate-cancer (accessed Sep 28, 2023).Search in Google Scholar
14. Eder, M., Schäfer, M., Bauder-Wüst, U., Hull, W.-E., Wängler, C., Mier, W., Haberkorn, U., Eisenhut, M. 68Ga-Complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjugate Chem. 2012, 23, 688–697; https://doi.org/10.1021/bc200279b.Search in Google Scholar PubMed
15. US Food and Drug, Administration. FDA Approves Second PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer 2021. https://www.fda.gov/drugs/ news-events-human-drugs/fda-approves-second-psma-targeted-pet-imaging-drug-men-prostate-cancer (accessed Sep 28, 2023).Search in Google Scholar
16. Ghosh, A., Heston, W. D. W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 2004, 91, 528–539; https://doi.org/10.1002/jcb.10661.Search in Google Scholar PubMed
17. von Treskow, A. Novartis Pluvicto™ Approved by FDA as First Targeted Radioligand Therapy for Treatment of Progressive, PSMA Positive Metastatic Castration-Resistant Prostate Cancer 2022. https://www.novartis.com/news/media-releases/novartis-pluvictotm-approved-fda-first-targeted-radioligand-therapy-treatment-progressive-psma-positive-metastatic-castration-resistant-prostate-cancer (accessed Sep 28, 2023).Search in Google Scholar
18. Maffioli, L., Florimonte, L., Costa, D. C., Correia, C. J., Grana, C., Luster, M., Bodei, L., Chinol, M. New radiopharmaceutical agents for the treatment of castration-resistant prostate cancer. J. Nucl. Med. Mol. Imag. 2015, 59, 420–438.Search in Google Scholar
19. Clarke, R. A., Schirra, H. J., Catto, J. W., Lavin, M. F., Gardiner, R. A. Markers for detection of prostate cancer. Cancers 2010, 2, 1125–1154; https://doi.org/10.3390/cancers2021125.Search in Google Scholar PubMed PubMed Central
20. Santoni, M., Scarpelli, M., Mazzucchelli, R., Lopez-Beltran, A., Cheng, L., Cascinu, S., Montironi, R. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises. J. Biol. Regul. Homeost. Agents 2014, 28, 555–563.Search in Google Scholar
21. Hillier, S. M., Maresca, K. P., Femia, F. J., Marquis, J. C., Foss, C. A., Nguyen, N., Zimmerman, C. N., Barrett, J. A., Eckelman, W. C., Pomper, M. G., Joyal, J. L., Babich, J. W. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009, 69, 6932–6940; https://doi.org/10.1158/0008-5472.can-09-1682.Search in Google Scholar
22. Afshar-Oromieh, A., Babich, J. W., Kratochwil, C., Giesel, F. L., Eisenhut, M., Kopka, K., Haberkorn, U. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J. Nucl. Med. 2016, 57(Suppl. 3), 79S–89S; https://doi.org/10.2967/jnumed.115.170720.Search in Google Scholar PubMed
23. Pillai, M. R. A., Nanabala, R., Joy, A., Sasikumar, A., Knapp, F. F. R. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl. Med. Biol. 2016, 43, 692–720; https://doi.org/10.1016/j.nucmedbio.2016.08.006.Search in Google Scholar PubMed
24. Barrio, M., Fendler, W. P., Czernin, J., Expert, H. K. Prostate specific membrane antigen (PSMA) ligands for diagnosis and therapy of prostate cancer. Rev. Mol. Diagn. 2016, 16, 1177–1188; https://doi.org/10.1080/14737159.2016.1243057.Search in Google Scholar PubMed
25. Siegel, R. L., Miller, K. D., Jemal, A. Markers for detection of prostate cancer. Cancer statistics, 2016. Ca - Cancer J. Clin. 2016, 66, 7–30; https://doi.org/10.3322/caac.21332.Search in Google Scholar PubMed
26. Wester, H. J., Schottelius, M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin. Nucl. Med. 2019, 49, 302–312; https://doi.org/10.1053/j.semnuclmed.2019.02.008.Search in Google Scholar PubMed
27. Rowe, S. P., Gorin, M. A., Allaf, M. E., Pienta, K. J., Tran, P. T., Pomper, M. G., Ross, A. E., Cho, S. Y. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis. 2016, 19, 223–230; https://doi.org/10.1038/pcan.2016.13.Search in Google Scholar PubMed PubMed Central
28. Wüstemann, T., Bauder-Wüst, U., Schäfer, M., Eder, M., Benesova, M., Leotta, K., Kratochwil, C., Haberkorn, U., Kopka, K., Mier, W. Design of internalizing PSMA-specific Glu-ureido-based radiopharmaceuticals. Theranostics 2016, 6, 1085–1095; https://doi.org/10.7150/thno.13448.Search in Google Scholar PubMed PubMed Central
29. Harada, N., Kimura, H., Onoe, S., Watanabe, H., Matsuoka, D., Arimitsu, K., Ono, M., Saji, H. Synthesis and biological evaluation of novel 18F-labeled probes targeting prostate-specific membrane antigen for positron emission tomography of prostate cancer. J. Nucl. Med. 2016, 57, 1978–1984; https://doi.org/10.2967/jnumed.116.175810.Search in Google Scholar PubMed
30. Cardinale, J., Schäfer, M., Benešová, M., Bauder-Wüst, U., Leotta, K., Eder, M., Neels, O. C., Haberkorn, U., Giesel, F. L., Kopka, K. Preclinical evaluation of 18F-PSMA-1007: a new prostate specific membrane antigen ligand for prostate cancer imaging. J. Nucl. Med. 2017, 58, 425–431; https://doi.org/10.2967/jnumed.116.181768.Search in Google Scholar PubMed
31. Kelly, J., Amor-Coarasa, A., Nikolopoulou, A., Kim, D., Williams, C.Jr, Ponnala, S., Babich, J. W. Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging. Eur. J. Nucl. Med. Mol. Imag. 2017, 44, 647–661; https://doi.org/10.1007/s00259-016-3556-5.Search in Google Scholar PubMed PubMed Central
32. Weineisen, M., Simecek, J., Schottelius, M., Schwaiger, M., Wester, H.-J. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014, 4, 63; https://doi.org/10.1186/s13550-014-0063-1.Search in Google Scholar PubMed PubMed Central
33. Ling, S. W., de Blois, E., Hooijman, E., van der Veldt, A., Brabander, T. Advances in 177Lu-PSMA and 225Ac-PSMA radionuclide therapy for metastatic castration-resistant prostate cancer. Pharmaceutics 2022, 14, 2166; https://doi.org/10.3390/pharmaceutics14102166.Search in Google Scholar PubMed PubMed Central
34. Alam, M. R., Singh, S. B., Thapaliya, S., Shrestha, S., Deo, S., Khanal, K. A review of 177Lutetium-PSMA and 225Actinium-PSMA as emerging theranostic agents in prostate cancer. Cureus 2022, 14, e29369; https://doi.org/10.7759/cureus.29369.Search in Google Scholar PubMed PubMed Central
35. Kratochwil, C., Haberkorn, U., Giesel, F. L. 225Ac-PSMA-617 for therapy of prostate cancer. Semin. Nucl. Med. 2020, 50, 133–140; https://doi.org/10.1053/j.semnuclmed.2020.02.004.Search in Google Scholar PubMed
36. D-Vincentis, G., Gerritsen, W., Gschwend, J. E., Hacker, M., Lewington, V., O’Sullivan, J. M., Oya, M., Pacilio, M., Parker, C., Shore, N., Sartor, O. Advances in targeted alpha therapy for prostate cancer. Ann. Oncol. 2019, 30, 1728–1739; https://doi.org/10.1093/annonc/mdz270.Search in Google Scholar PubMed PubMed Central
37. Kumar, K. S. A., Mathur, A. A convenient total synthesis of PSMA-617: a prostate specific membrane antigen (PSMA) ligand for prostate cancer endotherapeutic applications. Eur. J. Med. Chem. Rep. 2022, 6, 100084; https://doi.org/10.1016/j.ejmcr.2022.100084.Search in Google Scholar
38. Arndt, F. Diazomethane. Org. Synth. 1935, 15, 3.10.15227/orgsyn.015.0003Search in Google Scholar
39. Chen, Y., Pullambhatla, M., Foss, C. A., Byun, Y., Nimmagadd, S., Senthamizhchelvan, S., Sgouros, G., Mease, R. C., Pomper, M. G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoropyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 2011, 17, 7645–7653; https://doi.org/10.1158/1078-0432.ccr-11-1357.Search in Google Scholar
40. Wurzer, A., Kunert, J.-P., Fischer, S., Felber, V., Beck, R., Rose, F.-de., Alessandria, C. D’., Weber, W., Wester, H.-J. Synthesis and preclinical evaluation of 177 Lu-labeled radiohybrid PSMA ligands for endoradiotherapy of prostate cancer. J. Nucl. Med. 2022, 63, 1489–1495; https://doi.org/10.2967/jnumed.121.263371.Search in Google Scholar PubMed PubMed Central
41. Kumar, K. S. A., Mathur, A. Total chemical synthesis of PSMA-11: API for 68Ga-PSMA-11 used for prostate cancer diagnosis. Eur. J. Med. Chem. Rep. 2021, 3, 100014; https://doi.org/10.1016/j.ejmcr.2021.100014.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- NUCAR-2023: Foreword
- Research Articles
- Theoretical analysis of light and heavy-ion induced reactions: production of medically relevant 97Ru
- Excitation functions of alpha-particle induced nuclear reactions on nat Sn
- Non-destructive assay of plutonium in absence of gamma-ray spectrometry
- Catalytic destruction of oxalate in the supernatant stream generated during plutonium reconversion process
- Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
- Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
- Zirconium sponge production: an integrated approach for chemical characterization of process intermediates using ICP-OES
- Determination of 10B/11B in boric acid and B4C using LA-ICPMS
- Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
- Nanocrystalline Ce(OH)4-based materials: ruthenium selective adsorbent for highly alkaline radioactive liquid waste
- Production and radiochemical separation of 68Ge from irradiated Ga–Ni alloy target in 30 MeV cyclotron
- Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
- Total chemical synthesis of PSMA-617: an API for prostate cancer endotherapeutic applications
- Rapid screening technique for gross α and gross β estimations in aqueous samples during radiation emergency
- Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications
Articles in the same Issue
- Frontmatter
- Preface
- NUCAR-2023: Foreword
- Research Articles
- Theoretical analysis of light and heavy-ion induced reactions: production of medically relevant 97Ru
- Excitation functions of alpha-particle induced nuclear reactions on nat Sn
- Non-destructive assay of plutonium in absence of gamma-ray spectrometry
- Catalytic destruction of oxalate in the supernatant stream generated during plutonium reconversion process
- Quantification of Zr in simulated dissolver solution of U–Zr fuel by laser-induced breakdown spectroscopy
- Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
- Zirconium sponge production: an integrated approach for chemical characterization of process intermediates using ICP-OES
- Determination of 10B/11B in boric acid and B4C using LA-ICPMS
- Evaluating sustainability of Bhuj aquifer system, Western India using nuclear dating techniques
- Nanocrystalline Ce(OH)4-based materials: ruthenium selective adsorbent for highly alkaline radioactive liquid waste
- Production and radiochemical separation of 68Ge from irradiated Ga–Ni alloy target in 30 MeV cyclotron
- Preparation of [64Cu]Cu–NOTA complex as a potential renal PET imaging agent using 64Cu produced via the direct activation route
- Total chemical synthesis of PSMA-617: an API for prostate cancer endotherapeutic applications
- Rapid screening technique for gross α and gross β estimations in aqueous samples during radiation emergency
- Development of Dy3+ doped lithium magnesium borate glass system for thermoluminescence based neutron dosimetry applications