Startseite Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization

  • Lei Li , Ran Ma , Xuewei Liu , Tao Wen EMAIL logo , Bo Wu , Mingtai Sun , Zheng Jiang , Suhua Wang und Xiangke Wang EMAIL logo
Veröffentlicht/Copyright: 21. April 2022

Abstract

Inorganic ion-exchange materials show potential application for toxic radioactive ions due to their remarkable high efficiency and selectivity features. Here, two type of carbon-supported titanate (C@TNFs and C@TNFs(H)) nanofibers have been synthesized by a cost-effective in suit growth method. The resulting C@TNFs and C@TNFs(H) microspheres present uniform flower-like morphology and large surface area. The interlayer Na+ in the titanate shell provides docking sites for ion-exchange of radioactive ions (U(VI), Ba(II), and Sr(II)). Interestingly, the exceeding theoretical cation-exchange capacities (CECs) are achieved on C@TNFs for U(VI) ∼4.76 meq g−1 and Ba(II) ∼2.65 meq g−1 and C@TNFs(H) for Ba(II) ∼2.53 meq g−1 and Sr(II) ∼2.24 meq g−1, respectively. The impressive adsorption performance is mainly attributed to the synergistic effects of ion-exchange and surface complexation. More significantly, C@TNFs and C@TNFs(H) maintain high distribution coefficients (K d U) of >104 mL g−1 over a wider pH range (pH = 3.5–9.0) and high adsorption rate with short equilibrium time within 50 min. Competitive ion-exchange investigation shows a selectivity order of U(VI) > Ba(II) > Sr(II) at individual 10 ppm concentration, pH = 6.0 and T = 298 K. The related spectroscopic studies reveal the intercalative mechanism of radionuclides in the deformed titanate structure, as a result of target ions firmly trapped in the interlayer of C@TNFs and C@TNFs(H). These advantageous features allow the C@TNFs and C@TNFs(H) to be promising candidates for the remediation of toxic radioactive ions polluted water.


Corresponding authors: Tao Wen and Xiangke Wang, MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China, E-mail: (T. Wen), (X. Wang)

Award Identifier / Grant number: 2018YFC1900105

Award Identifier / Grant number: TZ2016004

Funding source: Beijing Outstanding Young Scientist Program

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Key Research and Development Program of China (2018YFC1900105), Science Challenge Project (TZ2016004), and Beijing Outstanding Young Scientist Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Feng, M. L., Sarma, D., Qi, X. H. K., Du, Z., Huang, X. Y., Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578; https://doi.org/10.1021/jacs.6b07351.Suche in Google Scholar

2. Feng, M. L., Sarma, D., Gao, Y. J., Qi, X. H., Li, W. A., Huang, X. Y., Kanatzidis, M. G. Efficient removal of [UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 2018, 140, 11133; https://doi.org/10.1021/jacs.8b07457.Suche in Google Scholar

3. Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777; https://doi.org/10.1002/adma.200702055.Suche in Google Scholar

4. Li, S. J., Hu, Y. Z., Zhen, Z. W., Cai, Y. W., Ji, Z. Y., Tan, X. L., Liu, Z. X., Zhao, G. X., Hu, S. X., Wang, X. K. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 2021, 64, 1323–1331; https://doi.org/10.1007/s11426-021-9987-1.Suche in Google Scholar

5. Cheng, G., Zhang, A. R., Zhao, Z. W., Chai, Z. M., Hu, B. W., Han, B., Ai, Y. J., Wang, X. K.: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 2021; https://doi.org/10.1016/j.scib.2021.05.012.Suche in Google Scholar

6. Wang, H. H., Guo, H., Zhang, N., Chen, Z. S., Hu, B. W., Wang, X. K. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and Bisphenol A: ESR, XPS and EXAFS investigation. Environ. Sci. Technol. 2019, 53, 6454; https://doi.org/10.1021/acs.est.8b06913.Suche in Google Scholar

7. Lapka, J. L., Paulenova, A., Alyapyshev, M. Y., Babain, V. A., Herbst, R. S., Law, J. D. Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions. Radiochim. Acta 2009, 97, 291; https://doi.org/10.1524/ract.2009.1588.Suche in Google Scholar

8. Schmitt, P., Beer, P. D., Drew, M. G. B., Sheen, P. D. Uranyl binding by a novel bis-calix [4] arene receptor. Tetrahedron Lett. 1998, 39, 6383; https://doi.org/10.1016/s0040-4039(98)01315-x.Suche in Google Scholar

9. Liu, X. L., Pang, H. W., Liu, X. W., Li, Q., Zhang, N., Mao, L., Qiu, M. Q., Hu, B. W., Yang, H., Wang, X. K. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076; https://doi.org/10.1016/j.xinn.2021.100076.Suche in Google Scholar PubMed PubMed Central

10. Ma, J. P., Wang, C., Xi, W. K., Zhao, Q. Y., Wang, S. Y., Qiu, M. Q., Wang, J. J., Wang, X. K. Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review. ACS ES&T Eng. 2021, 1, 685; https://doi.org/10.1021/acsestengg.0c00268.Suche in Google Scholar

11. Hu, B. W., Ai, Y. J., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X. K. Efficient elimination of organic and inorganic pollutants by biochar-based nanomaterials. Biochar 2020, 2, 47; https://doi.org/10.1007/s42773-020-00044-4.Suche in Google Scholar

12. Hu, B. W., Wang, H. F., Liu, R. R., Qiu, M. Q. Highly efficient U(VI) capture by amidoxime/carbon nitride composites: evidence of EXAFS and modeling. Chemosphere 2021, 274, 129743; https://doi.org/10.1016/j.chemosphere.2021.129743.Suche in Google Scholar

13. Semião, A. J. C., Rossiter, H. M. A., Schäfer, A. I. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. J. Membr. Sci. 2010, 348, 174; https://doi.org/10.1016/j.memsci.2009.10.056.Suche in Google Scholar

14. Villalobos-Rodriguez, R., Montero-Cabrera, M. E., Esparza-Ponce, H. E., Herrera-Peraza, E. F., Ballinas-Casarrubias, M. L. Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl. Radiat. Isot. 2012, 70, 872; https://doi.org/10.1016/j.apradiso.2012.01.017.Suche in Google Scholar

15. Ling, L., Zhang, W. X. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 2015, 137, 2788; https://doi.org/10.1021/ja510488r.Suche in Google Scholar

16. Ma, S., Huang, L., Ma, L., Shim, Y., Islam, S. M., Wang, P., Zhao, L. D., Wang, S., Sun, G., Yang, X., Kanatzidis, M. G. Efficient uranium capture by polysulfide/layered double hydroxide composites. J. Am. Chem. Soc. 2015, 137, 3670; https://doi.org/10.1021/jacs.5b00762.Suche in Google Scholar

17. Adeleye, S. A., Clay, P. G., Oladipo, M. O. A. Sorption of caesium, strontium and europium ions on clay minerals. J. Mater. Sci. 1994, 29, 954; https://doi.org/10.1007/bf00351416.Suche in Google Scholar

18. Misaelidesa, P., Godelitsasa, A., Filippidisb, A., Charistosa, D., Anousisc, I. Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 1995, 173–174, 237; https://doi.org/10.1016/0048-9697(95)04748-4.Suche in Google Scholar

19. Li, N., Zhang, L., Chen, Y., Fang, M., Zhang, J., Wang, H. Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv. Funct. Mater. 2012, 22, 835; https://doi.org/10.1002/adfm.201102272.Suche in Google Scholar

20. Komarneni, S., Roy, R. A cesium-selective ion sieve made by topotactic leaching of phlogopite mica. Science 1988, 239, 1286; https://doi.org/10.1126/science.239.4845.1286.Suche in Google Scholar PubMed

21. Al-Attar, L., Dyer, A. Sorption behaviour of uranium on birnessite, a layered manganese oxide. J. Mater. Chem. 2002, 12, 1381–1386; https://doi.org/10.1039/b108612j.Suche in Google Scholar

22. Yang, D., Sarina, S., Zhu, H., Liu, H., Zheng, Z., Xie, M., Smith, S. V., Komarneni, S. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 2011, 50, 10594; https://doi.org/10.1002/anie.201103286.Suche in Google Scholar PubMed

23. Xie, F., Zhang, L., Su, D., Jaroniec, M., Qiao, S. Z. Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 2017, 29, 1700989; https://doi.org/10.1002/adma.201700989.Suche in Google Scholar PubMed

24. Tan, X., Fang, M., Tan, L., Liu, H., Ye, X., Hayat, T., Wang, X. K. Core-shell hierarchical C@Na2Ti3O7·9H2O nanostructures for the efficient removal of radionuclides. Environ. Sci.: Nano 2018, 5, 1140; https://doi.org/10.1039/c8en00149a.Suche in Google Scholar

25. Zou, Y., Wang, X., Ai, Y., Liu, Y., Ji, Y., Wang, H., Hayatf, T., Alsaedif, A., Hu, W., Wang, X. β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. 2016, 4, 14170; https://doi.org/10.1039/c6ta05958a.Suche in Google Scholar

26. Komarneni, S., Kozai, N., Paulus, W. J. Superselective clay for radium uptake. Nature 2001, 410, 771; https://doi.org/10.1038/35071173.Suche in Google Scholar PubMed

27. Yang, D., Zheng, Z., Yuan, Y., Liu, H., Waclawik, E. R., Ke, X., Xie, M., Zhu, H. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys. Chem. Chem. Phys. 2010, 12, 1271; https://doi.org/10.1039/b911085b.Suche in Google Scholar PubMed

28. Ide, Y., Ochi, N., Ogawa, M. Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angew. Chem. Int. Ed. 2011, 123, 680; https://doi.org/10.1002/ange.201002322.Suche in Google Scholar

29. Huang, S., Pang, H., Li, L., Jiang, S., Wen, T., Zhuang, L., Hu, B., Wang, X. K. Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chem. Eng. J. 2018, 353, 157; https://doi.org/10.1016/j.cej.2018.07.129.Suche in Google Scholar

30. Liu, W., Zhao, X., Wang, T., Zhao, D., Ni, J. Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem. Eng. J. 2016, 286, 427; https://doi.org/10.1016/j.cej.2015.10.094.Suche in Google Scholar

31. Jurado-Vargas, M., OIguln, M. T., Ordonez-Regil, E., Jimenez-Reyes, M. Ion exchange of radium and barium in zeolites. J. Radioanal. Nucl. Chem. 1997, 218, 153; https://doi.org/10.1007/bf02039327.Suche in Google Scholar

32. Zhao, M., Huang, J., Guo, X., Chen, H., Zhao, H., Dong, L., Liu, X.-J. Preparation of Na2Ti3O7/titanium peroxide composites and their adsorption property on cationic dyes. J. Chem. 2015, 2015, 1.10.1155/2015/363405Suche in Google Scholar

33. Manos, M. J., Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441; https://doi.org/10.1021/ja308028n.Suche in Google Scholar

34. Li, L., Huang, S., Wen, T., Ma, R., Yin, L., Li, J., Chen, Z., Hayat, T., Hu, B., Wang, X. K. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J. Colloid Interface Sci. 2019, 543, 225; https://doi.org/10.1016/j.jcis.2019.02.060.Suche in Google Scholar

35. Sun, X., Li, Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur J. 2003, 9, 2229; https://doi.org/10.1002/chem.200204394.Suche in Google Scholar

36. Yin, L., Wang, P., Wen, T., Yu, S., Wang, X., Hayat, T., Alsaedi, A., Wang, X. K. Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environ. Pollut. 2017, 226, 125; https://doi.org/10.1016/j.envpol.2017.03.078.Suche in Google Scholar

37. Verhoeven, J. A. T., Doveren, H. van. XPS studies on Ba, BaO and the oxidation of Ba. Appl. Surf. Sci. 1980, 5, 361; https://doi.org/10.1016/0378-5963(80)90101-4.Suche in Google Scholar

38. Pilleux, M. E., Grahmann, C. R., Fuenzalida, V. M. Hydrothermal strontium titanate films on titanium: an XPS and AES depth-profiling study. J. Am. Ceram. Soc. 1994, 77, 1601; https://doi.org/10.1111/j.1151-2916.1994.tb09763.x.Suche in Google Scholar

39. Kim, S. B., Kim, C. I., Chang, E. G., Yeom, G. Y. Study on surface reaction of (Ba, Sr)TiO3 thin films by high density plasma etching. J. Vac. Sci. Technol., A 1999, 17, 2156; https://doi.org/10.1116/1.581742.Suche in Google Scholar

40. Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Han, D. H., Lee, J., Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. 2014, 2, 637; https://doi.org/10.1039/c3ta14052k.Suche in Google Scholar

41. Huang, C., Young, N. P., Granta, P. S. Spray processing of TiO2 nanoparticle/ionomer coatings on carbon nanotube scaffolds for solid-state supercapacitors. J. Mater. Chem. 2014, 2, 11022; https://doi.org/10.1039/c4ta02188f.Suche in Google Scholar

42. Ylhäinen, E. K., Nunes, M. R., Silvestre, A. J., Monteiro, O. C. Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties. J. Mater. Sci. 2012, 47, 4305; https://doi.org/10.1007/s10853-012-6281-x.Suche in Google Scholar

43. Zhang, R., Chen, C., Li, J., Wang, X. K. Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study. J. Colloid Interface Sci. 2015, 460, 237; https://doi.org/10.1016/j.jcis.2015.08.073.Suche in Google Scholar PubMed

44. Dyer, A., Chow, J. K. K., Umar, I. M. The uptake of radioisotopes onto clays and other natural materials: I. Cesium, strontium and ruthenium onto clays. J. Radioanal. Nucl. Chem. 1999, 242, 313; https://doi.org/10.1007/bf02345558.Suche in Google Scholar

45. Zhang, S., Liu, Y., Gu, P., Ma, R., Wen, T., Zhao, G., Li, L., Ai, Y., Hu, C., Wang, X. K. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal. B Environ. 2019, 248, 1; https://doi.org/10.1016/j.apcatb.2019.02.008.Suche in Google Scholar

46. Zhang, Y., Zhu, M., Zhang, S., Cai, Y., Lv, Z., Fang, M., Tan, X., Wang, X. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B Environ. 2019, 279, 119390.10.1016/j.apcatb.2020.119390Suche in Google Scholar

47. Dai, S. H., Wang, N., Qi, C. J., Wang, X. X., Ma, Y., Yang, L., Liu, X. Y., Huang, Q., Nie, C. M., Hu, B. W., Wang, X. K. Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Sci. Total Environ. 2019, 685, 986; https://doi.org/10.1016/j.scitotenv.2019.06.292.Suche in Google Scholar PubMed

48. Liu, W., Wang, T., Borthwick, A. G. L., Wang, Y., Yin, X., Li, X., Ni, J. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Sci. Total Environ. 2013, 456–457, 171; https://doi.org/10.1016/j.scitotenv.2013.03.082.Suche in Google Scholar PubMed

49. Yang, D., Liu, H., Zheng, Z., Sarina, S., Zhu, H. Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale 2013, 5, 2232; https://doi.org/10.1039/c3nr33622k.Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1055).


Received: 2021-05-12
Accepted: 2021-07-10
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1055/html
Button zum nach oben scrollen