Home Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
Article
Licensed
Unlicensed Requires Authentication

Chemistry of the elements at the end of the actinide series using their low-energy ion-beams

  • Tetsuya K. Sato ORCID logo EMAIL logo and Yuichiro Nagame
Published/Copyright: May 13, 2022

Abstract

Studies of the chemical properties of the elements at the uppermost end of the Periodic Table are extremely challenging both experimentally and theoretically. One of the most important and interesting subjects is to clarify the basic chemical properties of these elements as well as to elucidate the influence of relativistic effects on their electronic configuration. Isotopes of these elements produced at accelerators, however, are short-lived, and the number of produced atoms is so small; any chemistry to be performed must be done on an atom-at-a-time basis that imposes stringent limits on experimental procedures. Here we describe our recent achievements in the effective production of low-energy ion-beams of the elements at the end of the actinide series, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), using a surface ionization ion-source installed in the ISOL (Isotope Separator On-Line) at the Tandem accelerator facility of JAEA (Japan Atomic Energy Agency). Then the successful measurements of the first ionization potentials (IP1) of these elements with the ISOL setup are reviewed. The measured IP1 values increased up to No via Fm and Md, while that of Lr was the lowest among the actinides. Based on the variation of the IP1 values of the heavy actinides with the atomic number in comparison with those of the heavy lanthanides, the results clearly demonstrated that the 5f orbitals are fully filled at No, and the actinide series ends with Lr. Furthermore, the IP1 value of Lr provoked controversy over its position in the Periodic Table, so a short introduction to this issue is presented. The feasibility of the extension of chemical studies to still heavier elements with their ion-beams generated by ISOL is briefly discussed.


Corresponding author: Tetsuya K. Sato, Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan; and Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail:

Funding source: Grant-in-Aid for Scientific Research (A) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Award Identifier / Grant number: 16H02130

Funding source: Grant-in-Aid for Scientific Research (C) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Award Identifier / Grant number: 26390119

Funding source: Fostering Joint International Research (B) of Japan Society for the Promotion of Science (JSPS)

Award Identifier / Grant number: 18KK0086

Acknowledgments

The works summarized in this article were performed by the staff of the nuclear chemistry group in Advanced Research Center, JAEA in collaboration with colleagues from other institutes. We thank all the colleagues who contributed to this program. We are grateful to the JAEA tandem accelerator crew for providing stable and intense beams.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Grant-in-Aid for Scientific Research (A) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (grant number 16H02130), Grant-in-Aid for Scientific Research (C) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (grant number 26390119) and Fostering Joint International Research (B) of Japan Society for the Promotion of Science (JSPS) (grant number 18KK0086).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pyykkö, P. The physics behind chemistry and the periodic table. Chem. Rev. 2012, 112, 371–384.10.1021/cr200042eSearch in Google Scholar PubMed

2. Pershina, V. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties. Radiochim. Acta 2019, 107, 833–864. https://doi.org/10.1515/ract-2018-3098.Search in Google Scholar

3. Schwerdtfeger, P., Smits, O., Pyykkö, P. The periodic table and the physics that drives it. Nature Rev. Chem. 2020, 4, 359–380. https://doi.org/10.1038/s41570-020-0195-y.Search in Google Scholar

4. Kratz, J. V. The impact of the properties of the heaviest elements on the chemical and physical sciences. Radiochim. Acta 2012, 100, 569–578. https://doi.org/10.1524/ract.2012.1963.Search in Google Scholar

5. Schädel, M., Shaughnessy, D., Eds. The Chemistry of Superheavy Elements, 2nd ed.; Springer: Heidelberg, 2014.10.1007/978-3-642-37466-1Search in Google Scholar

6. Schädel, M. Chemistry of superheavy elements. Angew. Chem. Int. Ed. 2006, 45, 368–401.10.1002/anie.200461072Search in Google Scholar PubMed

7. Schädel, M. Chemistry of superheavy elements. Radiochim. Acta 2012, 100, 579–604.10.1524/ract.2012.1965Search in Google Scholar

8. Türler, A., Pershina, V. Advances in the production and chemistry of the heaviest elements. Chem. Rev. 2013, 113, 1237–1312.10.1021/cr3002438Search in Google Scholar PubMed

9. Schädel, M. Chemistry of the superheavy elements. Philos. Trans. A Math Phys. Eng. Sci. 2015, 373, 20140191.10.1098/rsta.2014.0191Search in Google Scholar

10. Nagame, Y., Sato, T. K., Kratz, J. V. Actinides and transactinides. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, 2020.10.1002/0471238961.0103200919050102.a01.pub3Search in Google Scholar

11. Hertel, G. R. Surface Ionization. II. The first ionization potential of uranium. J. Chem. Phys. 1967, 47, 335–336. https://doi.org/10.1063/1.1711871.Search in Google Scholar

12. Smith, D. H., Hertel, G. R. First ionization potentials of Th, Np, and Pu by surface ionization. J. Chem. Phys. 1969, 51, 3105–3107. https://doi.org/10.1063/1.1672462.Search in Google Scholar

13. Hildenbrand, D. L., Murad, E. Ionization potential of thorium. J. Chem. Phys. 1974, 61, 5466–5467. https://doi.org/10.1063/1.1681905.Search in Google Scholar

14. Worden, E. F., Blaise, J., Fred, M., Trautmann, N., Wyart, J.-F. Spectra and electronic structures of free actinide atoms and ions. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, Vol. 3, 2006, pp. 1836–1892. Chap. 16.10.1007/1-4020-3598-5_16Search in Google Scholar

15. Sugar, J. Ionization energies of the neutral actinides. J. Chem. Phys. 1973, 59, 788–791. https://doi.org/10.1063/1.1680091.Search in Google Scholar

16. Sugar, J. Revised ionization energies of the neutral actinides. J. Chem. Phys. 1974, 60, 4103. https://doi.org/10.1063/1.1680874.Search in Google Scholar

17. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K. Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta, Part B 1997, 52, 717–726.10.1016/S0584-8547(96)01670-9Search in Google Scholar

18. Deissenberger, R., Köhler, S., Ames, F., Eberhardt, K., Erdmann, N., Funk, H., Herrmann, G., Kluge, H.-J., Nunnemann, M., Passler, G., Riegel, J., Scheerer, F., Trautmann, N. First determination of the ionization potential of americium and curium. Angew. Chem. Int. Ed. 1995, 34, 814–815. https://doi.org/10.1002/anie.199508141.Search in Google Scholar

19. Köhler, S., Erdmann, N., Nunnemann, M., Herrmann, G., Huber, G., Kratz, J. V., Passler, G., Trautmann, N. First experimental determination of the ionization potentials of berkelium and californium. Angew. Chem. Int. Ed. 1996, 35, 2856–2858.10.1002/anie.199628561Search in Google Scholar

20. Peterson, J. R., Erdmann, N., Nunnemann, M., Eberhardt, K., Huber, G., Kratz, J. V., Passler, G., Stetzer, O., Thörle, P., Trautmann, N., Waldek, A. Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS). J. Alloys Compd. 1998, 271–273, 876–878. https://doi.org/10.1016/s0925-8388(98)00238-2.Search in Google Scholar

21. Roßnagel, J., Raeder, S., Hakimi, A., Ferrer, R., Trautmann, N., Wendt, K. Determination of the first ionization potential of actinium. Phys. Rev. A 2012, 85, 12525–12531.10.1103/PhysRevA.85.012525Search in Google Scholar

22. Wendt, K., Gottwald, T., Mattolat, C., Raeder, S. Ionization potentials of the lanthanides and actinides – towards atomic spectroscopy of super-heavy elements. Hyperfine Interact. 2014, 227, 55–67. https://doi.org/10.1007/s10751-014-1041-8.Search in Google Scholar

23. Naubereit, P., Gotteald, T., Studer, D., Wendt, K. Excited atomic energy levels in protactinium by resonance ionization spectroscopy. Phys. Rev. A 2018, 98, 22505–22511. https://doi.org/10.1103/physreva.98.022505.Search in Google Scholar

24. Seaborg, G. T. The chemical and radioactive properties of the heavy elements. Chem. Eng. News 1945, 23, 2190–2193. https://doi.org/10.1021/cen-v023n023.p2190.Search in Google Scholar

25. Seaborg, G. T. The transuranium elements. Science 1946, 104, 379–386. https://doi.org/10.1126/science.104.2704.379.Search in Google Scholar PubMed

26. Brewer, L. Energies of the electronic configurations of the lanthanide and actinide neutral atoms. J. Opt. Soc. Am. 1971, 61, 1101–1111. https://doi.org/10.1364/josa.61.001101.Search in Google Scholar

27. Rajnak, K., Shore, B. W. Regularities in s-electron binding energies in lNsM configurations. J. Opt. Soc. Am. 1978, 68, 360–367. https://doi.org/10.1364/josa.68.000360.Search in Google Scholar

28. Desclaux, J.-P., Fricke, B. Relativistic prediction of the ground state of atomic lawrencium. J. Physique 1980, 41, 943–946. https://doi.org/10.1051/jphys:01980004109094300.10.1051/jphys:01980004109094300Search in Google Scholar

29. Liu, W., Küchle, W., Dolg, M. Ab initio pseudopotential and density-functional all-electron study of ionization and excitation energies of actinide atoms. Phys. Rev. A 1998, 58, 1103–1110. https://doi.org/10.1103/physreva.58.1103.Search in Google Scholar

30. Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U. Transition energies of atomic lawrencium. Eur. Phys. J. D 2007, 45, 115–119. https://doi.org/10.1140/epjd/e2007-00130-9.Search in Google Scholar

31. Pantazis, D. A., Neese, F. All-electron scalar relativistic basis sets for the actinides. J. Chem. Theory Comput. 2011, 7, 677–684. https://doi.org/10.1021/ct100736b.Search in Google Scholar

32. Dzuba, V. A., Safronova, M. S., Safronova, U. I. Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A 2014, 90, 12504–12511. https://doi.org/10.1103/physreva.90.012504.Search in Google Scholar

33. Sato, N., Sato, T. K., Asai, M., Toyoshima, A., Tsukada, K., Li, Z. J., Nishio, K., Nagame, Y., Schädel, M., Haba, H., Ichikawa, S., Kikunaga, H. Production of 256Lr in the 249,250,251Cf + 11B, 243Am + 18O, and 248Cm + 14N reactions. Radiochim. Acta 2014, 102, 211–219. https://doi.org/10.1515/ract-2014-2142.Search in Google Scholar

34. Sato, T. K., Asai, M., Borshevsky, A., Stora, T., Sato, N., Kaneya, Y., Tsukada, K., Düllmann, Ch. E., Eberhardt, K., Eliav, E., Ichikawa, S., Kaldor, U., Kratz, J. V., Miyashita, S., Nagame, Y., Ooe, K., Osa, A., Renisch, D., Runke, J., Schädel, M., Thörle-Pospiech, P., Toyoshima, A., Trautmann, N. Measurement of the first ionization potential of lawrencium, element 103. Nature 2015, 520, 209–211. https://doi.org/10.1038/nature14342.Search in Google Scholar

35. Sato, T. K., Asai, M., Borschevsky, A., Beerwerth, R., Kaneya, Y., Makii, H., Mitsukai, A., Nagame, Y., Osa, A., Toyoshima, A., Tsukada, K., Sakama, M., Takeda, S., Ooe, K., Sato, D., Shigekawa, Y., Ichikawa, S., Düllmann, Ch. E., Grund, J., Renisch, D., Kratz, J. V., Schädel, M., Eliav, E., Kaldor, U., Fritzsche, S., Stora, T. The first ionization potentials of Fm, Md, No, and Lr: Verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 2018, 140, 14609–14613. https://doi.org/10.1021/jacs.8b09068.Search in Google Scholar

36. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team. NIST Atomic Spectra Database (version 5.5.2); National Institute of Standards and Technology, Gaithers burg: MD. [Online] [Tue Jan 30 2018]. https://physics.nist.gov/asd.Search in Google Scholar

37. Zandberg, É. Ya., Ionov, N. I. Surface ionization. Sov. Phys. Usp. 1959, 2, 255–281. https://doi.org/10.1070/pu1959v002n02abeh003123.Search in Google Scholar

38. Kirchner, R. On the thermoionization in hot cavities. Nucl. Inst. Methods A 1990, 292, 203–208. https://doi.org/10.1016/0168-9002(90)90377-i.Search in Google Scholar

39. Sato, T. K., Sato, N., Asai, M., Tsukada, K., Toyoshima, A., Ooe, K., Miyashita, S., Schädel, M., Kaneya, Y., Nagame, Y., Osa, A., Ichikawa, S., Stora, T., Kratz, J. V. First successful ionization of Lr (Z = 103) by a surface-ionization technique. Rev. Sci. Instrum. 2013, 84, 23304–23311. https://doi.org/10.1063/1.4789772.Search in Google Scholar

40. Ichikawa, S., Asai, M., Tsukada, K., Osa, A., Ikuta, T., Shinohara, N., Iimura, H., Nagame, Y., Hatsukawa, Y., Nishiaka, I., Kawade, K., Yamamoto, H., Shibata, M., Kojima, Y. Mass separation of neutron-rich isotopes using a gas-jet coupled thermal ion source. Nucl. Instrum. Methods Phys. Res., Sect. A 1996, 374, 330–334. https://doi.org/10.1016/0168-9002(96)00086-1.Search in Google Scholar

41. Ichikawa, S., Tsukada, K., Asai, M., Haba, H., Sakama, M., Kojima, Y., Shibata, M., Nagame, Y., Oura, Y., Kawade, K. Performance of the multiple target He/PbI2 aerosol jet system for mass separation of neutron-deficient actinide isotopes. Nucl. Instrum. Methods Phys. Res., Sect. B 2002, 187, 548–554. https://doi.org/10.1016/s0168-583x(01)01145-4.Search in Google Scholar

42. Nagame, Y., Asai, M., Haba, H., Goto, S., Tsukada, K., Nishinaka, I., Nishio, K., Ichikawa, S., Toyoshima, A., Akiyama, K., Nakahara, H., Sakama, M., Schädel, M., Kratz, J. V., Gäggeler, H. W., Türler, A. J. Nucl. Radiochem. Sci. 2002, 3, 85–88. https://doi.org/10.14494/jnrs2000.3.85.Search in Google Scholar

43. Sato, T. K., Asai, M., Sato, N., Tsukada, K., Toyoshima, A., Ooe, K., Miyashita, S., Kaneya, Y., Osa, A., Schädel, M., Nagame, Y., Ichikawa, S., Storal, T., Kratz, J. V. Development of a He/CdI2 gas-jet system coupled to a surface ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103). J. Radioanal. Nucl. Chem. 2015, 303, 1253–1257. https://doi.org/10.1007/s10967-014-3467-5.Search in Google Scholar

44. Laatiaoui, M., Lauth, W., Backe, H., Block, M., Ackermann, D., Cheal, B., Chhetri, P., Düllmann, Ch. E., Van Duppen, P., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Lautenschläger, F., Mistry, A. K., Raeder, S., Ramirez, E. M., Walther, T., Wraith, C., Yakushev, A. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 2016, 538, 495–498. https://doi.org/10.1038/nature19345.Search in Google Scholar PubMed

45. Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Droese, C., Düllmann, Ch. E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. K., Raeder, S., Van Duppen, P., Walther, Th., Yakushev, A., Zhang, Z. Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 2018, 120, 3003–3011. https://doi.org/10.1103/PhysRevLett.120.263003.Search in Google Scholar PubMed

46. Backe, H., Lauth, W., Block, M., Laatiaoui, M. Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. 2015, 944, 492–517. https://doi.org/10.1016/j.nuclphysa.2015.07.002.Search in Google Scholar

47. Block, M. Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure. Radiochim. Acta 2019, 107, 603–613. https://doi.org/10.1515/ract-2019-0002.Search in Google Scholar

48. Block, M., Laatiaoui, M., Raeder, S. Recent progress in laser spectroscopy of the actinides. Prog. Part. Nucl. Phys. 2021, 116, 103834–103841. https://doi.org/10.1016/j.ppnp.2020.103834.Search in Google Scholar

49. Lauth, W., Backe, H., Dahlinger, M., Klaft, I., Schwamb, P., Schwickert, G., Trautmann, N., Othmer, U. Resonance ionization spectroscopy in a buffer gas cell with radioactive decay detection, demonstrated using 208Tl. Phys. Rev. Lett. 1992, 68, 1675–1678. https://doi.org/10.1103/physrevlett.68.1675.Search in Google Scholar

50. Laatiaoui, M., Backe, H., Block, M., Heßberger, F. P., Kunz, P., Lautenschläger, F., Lauth, W., Sewtz, M., Walther, T. On laser spectroscopy of the element nobelium (Z = 102). Eur. Phys. J. D 2014, 68, 71–1. https://doi.org/10.1140/epjd/e2014-40617-6.Search in Google Scholar

51. Kwarsick, J. T., Pore, J. L., Gates, J. M., Gregorich, K. E., Gibson, J. K., Jian, J., Pang, G. K., Shu, D. K. Assessment of the second-ionization potential of lawrencium: investigating the end of the actinide series with a one-atom-at-a-time gas-phase ion chemistry technique. J. Phys. Chem. 2021, 125, 6818–6828. https://doi.org/10.1021/acs.jpca.1c01961.Search in Google Scholar PubMed

52. Castelvecchi, D. Exotic atom struggles to find its place in the periodic table. Nature 2015. https://doi.org/10.1038/nature.2015.17275.Search in Google Scholar

53. Jansen, W. B. The position of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J. Chem. Edu. 1982, 59, 634–636.10.1021/ed059p634Search in Google Scholar

54. Jansen, W. The position of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. Found. Chem. 2015, 17, 23–31.10.1021/ed059p634Search in Google Scholar

55. Which elements belong in group 3 of the periodic table? Chem. Int. 2016, 38, 22-23. https://doi.org/10.1515/ci-2016-0213.Search in Google Scholar

56. IUPAC Projects No.: 2015-039-2-200. The constitution of Group 3 of the Periodic Table. https://iupac.org/project/2015-039-2-3200.Search in Google Scholar

57. Scerri, E. Recent attempts to change the periodic table. Philos. Trans. A Math Phys. Eng. Sci. 2020, 378, 20190300–20190301. https://doi.org/10.1098/rsta.2019.0300.Search in Google Scholar

58. Pershina, V. Theoretical chemistry of the heaviest elements. In The Chemistry of Superheavy Elements, 2nd ed.; Schädel, M., Shaughnessy, D., Eds.; Springer: Heidelberg, 2014, pp. 135–239.10.1007/978-3-642-37466-1_3Search in Google Scholar

59. Nitschke, J. M. An electron-beam-generated-plasma ion source for on-line isotope separation. Nucl. Inst. and Methods in Phys. Res. A 1985, 236, 1–16. https://doi.org/10.1016/0168-9002(85)90118-4.Search in Google Scholar

60. Yushkevich, Yu. V., Turek, M., Mączka, D., Pyszniak, K., Słowiński, B., Vaganov, Yu. A., Zubrzycki, J. Working parameters of the electron-beam-generated ion source for ISOL facilities. Nukleonika 2012, 57, 351–356.Search in Google Scholar

61. Leimbach, D., Karls, J., Guo, Y. Y., Ahmed, R., Ballof, J., Bengtsson, L., Pamies, F. B., Borschevsky, A., Chrysalidis, K., Eliav, E., Fedorov, D., Fedosseev, V., Forstner, O., Galland, N., Garcia Ruiz, R. F., Granados, C., Heinke, R., Johnston, K., Koszorus, A., Köster, U., Kristiansson, M. K., Liu, Y., Marsh, B., Molkanov, P., Pašteka, L., Ramos, J. P., Renault, E., Reponen, M., Ringvall-Moberg, A., Rossel, R. E., Studer, D., Vernon, A., Warbinek, J., Welander, J., Wendt, K. The electron affinity of astatine. Nat. Commun. 2020, 11, 3824–3831. https://doi.org/10.1038/s41467-020-17599-2.Search in Google Scholar

62. Armentrout, P. B. Chemistry of excited electronic states. Science 1991, 251, 175–179. https://doi.org/10.1126/science.251.4990.175.Search in Google Scholar

63. Reith, U., Herlert, A., Kratz, J. V., Schweikhard, L., Vogel, M., Walther, C. Ion-molecular reactions of Ru+ and Os+ with oxygen in a Penning trap. Radiochim. Acta 2002, 90, 337–343.10.1524/ract.2002.90.6.337Search in Google Scholar

64. Gibson, J. K. Gas-phase chemistry of actinide ions: probing the distinctive character of the 5f elements. Int. J. Mass Spectrom. 2002, 214, 1–21. https://doi.org/10.1016/s1387-3806(01)00559-0.Search in Google Scholar

65. Schwarz, H. Relativistic effects in gas-phase ion chemistry: an experimentalist’s view. Angew. Chem. Int. Ed. 2003, 42, 4442–4454. https://doi.org/10.1002/anie.200300572.Search in Google Scholar PubMed

66. Laatiaoui, M., Buchachenko, A. A., Viehland, L. A. Laser resonance chromatography of superheavy elements. Phys. Rev. Lett. 2020, 125, 23002–23011. https://doi.org/10.1103/PhysRevLett.125.023002.Search in Google Scholar PubMed

Received: 2021-12-30
Accepted: 2022-04-19
Published Online: 2022-05-13
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0001/html
Scroll to top button