Abstract
Surface adsorption has a major influence on the environmental mobility of radionuclides, including uranium. Six decades ago, the description of the sorption process relied predominantly on simple descriptive parameters of solid–liquid partitioning (such as Kd values). There have since been numerous systematic investigations of the processes controlling U adsorption, including the affinity of U for different types of geologic materials, the influence of factors such as pH, the effects of complexing ligands, and the role of microorganisms. Mathematical descriptions of sorption processes have adopted various models – including sorption isotherms, surface complexation models and other types of modelling approaches, aided by advances in computational and analytical techniques. In recent years, mechanistic models have incorporated structural insights gained from spectroscopic techniques (such as EXAFS and TRLFS). Throughout the period, the nuclear waste community has sought to develop models for U sorption in complex systems associated with radioactive waste disposal, involving a range of mineral surfaces and incorporating numerous interactions and processes. To some extent, the ongoing questions concerning U adsorption can be considered as being common to many environmental metal contaminants. However, uranium is a unique and significant case, particularly for the radiochemical community, where the long-term behaviour of actinides is a central issue.
Acknowledgments
It is noted that many of the highly cited papers in Tables 1 and 2 are from research initially reported in the conference series “Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere”, of which the first conference was held in 1987. The authors have benefitted from the accumulated wisdom and positive engagement of the international radiochemical and nuclear waste “Migration Conference” communities. We look forward to future interactions and advances in the field.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Krauskopf, K. B. Introduction to Geochemistry; McGraw-Hill: New York, USA, 1967.Search in Google Scholar
2. Smellie, J. A. T., Karlsson, F. The use of natural analogues to assess radionuclide transport. Eng. Geol. 1999, 52, 193–220; https://doi.org/10.1016/s0013-7952(99)00006-x.Search in Google Scholar
3. Payne, T. E., Airey, P. L. Radionuclide migration at the Koongarra uranium deposit, Northern Australia – lessons from the Alligator Rivers analogue project. Phys. Chem. Earth 2006, 31, 572–586; https://doi.org/10.1016/j.pce.2006.04.008.Search in Google Scholar
4. Finch, R. J., Ewing, R. C. Alteration of natural UO2 under oxidizing conditions from Shinkolobwe, Katanga, Zaire: a natural analogue for the corrosion of spent fuel. Radiochim. Acta 1991, 52–53, 395–402; https://doi.org/10.1524/ract.1991.5253.2.395.Search in Google Scholar
5. Menet, C., Ménager, M. T., Petit, J. C. Migration of radioelements around the new nuclear reactors at Oklo: analogies with a high-level waste repository. Radiochim. Acta 1992, 58–59, 395–400; https://doi.org/10.1524/ract.1992.5859.2.395.Search in Google Scholar
6. Anderson, E. B., Burakov, B. E., Pazukhin, E. M. High-uranium zircon from “Chernobyl lavas”. Radiochim. Acta 1992, 60, 149–152.10.1524/ract.1993.60.23.149Search in Google Scholar
7. Paatero, J., Jaakkola, T., Reponen, A. Determination of the 241Pu deposition in Finland after the Chernobyl accident. Radiochim. Acta 1994, 64, 139–144; https://doi.org/10.1524/ract.1994.64.2.139.Search in Google Scholar
8. Kindler, B., Ackermann, D., Hartmann, W., Heßberger, F. P., Hofmann, S., Hübner, A., Lommel, B., Mann, R., Steiner, J. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 590, 126–130; https://doi.org/10.1016/j.nima.2008.02.031.Search in Google Scholar
9. Suk, W. A., Heacock, M. L., Trottier, B. A., Amolegbe, S. M., Avakian, M. D., Carlin, D. J., Henry, H. F., Lopez, A. R., Skalla, L. A. Benefits of basic research from the superfund research program. Rev. Environ. Health 2020, 35, 85–109; https://doi.org/10.1515/reveh-2019-0104.Search in Google Scholar
10. Hostetler, P. B., Garrels, R. M. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits. Econ. Geol. 1962, 57, 137–167; https://doi.org/10.2113/gsecongeo.57.2.137.Search in Google Scholar
11. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochem. Cosmochim. Acta 1978, 42, 547–569; https://doi.org/10.1016/0016-7037(78)90001-7.Search in Google Scholar
12. Grenthe, I., Fuger, F., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H. Chemical Thermodynamics of Uranium. Chemical Thermodynamics, Vol. 1; North-Holland: Amsterdam, 1992; p. 715.Search in Google Scholar
13. Bernhard, G., Geipel, G., Brendler, V., Nitsche, H. Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 1996, 74, 87–91; https://doi.org/10.1524/ract.1996.74.special-issue.87.Search in Google Scholar
14. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H. Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim. Acta 2001, 89, 511–518; https://doi.org/10.1524/ract.2001.89.8.511.Search in Google Scholar
15. Kalmykov, S. N., Choppin, G. R. Mixed Ca2+/UO22+/CO32− complex formation at different ionic strengths. Radiochim. Acta 2000, 88, 603–606; https://doi.org/10.1524/ract.2000.88.9-11.603.Search in Google Scholar
16. Lenhart, J. J., Cabaniss, S. E., MacCarthy, P., Honeyman, B. D. Uranium(VI) complexation with citric, humic and fulvic acids. Radiochim. Acta 2000, 88, 345–353; https://doi.org/10.1524/ract.2000.88.6.345.Search in Google Scholar
17. Kinniburgh, D. G. General purpose adsorption isotherms. Environ. Sci. Technol. 1986, 20, 895–904; https://doi.org/10.1021/es00151a008.Search in Google Scholar
18. Parsons, P. J. Movement of Radioactive Waste Through Soil; AECL: Chalk River, Canada, 1961.Search in Google Scholar
19. Freeze, R. A., Cherry, J. A. Groundwater; Prentice-Hall: New Jersey, 1979; p. 604.Search in Google Scholar
20. Jung, J., Lee, J. K., Hahn, P. S. Development and application of a sorption data base for the performance assessment of a radwaste repository. Waste Manage. 2001, 21, 363–369; https://doi.org/10.1016/s0956-053x(00)00083-0.Search in Google Scholar
21. Sheppard, M. I., Thibault, D. H. Default soil solid liquid partition-coefficients, Kds, for 4 major soil types – a Compendium. Health Phys. 1990, 59, 471–482.Search in Google Scholar
22. Payne, T. E., Davis, J. A., Waite, T. D. Uranium adsorption on ferrihydrite – effects of phosphate and humic acid. Radiochim. Acta 1996, 74, 239–243; https://doi.org/10.1524/ract.1996.74.special-issue.239.Search in Google Scholar
23. Payne, T. E. Uranium (VI) Interactions with Mineral Surfaces: Controlling Factors and Surface Complexation Modelling; University of NSW: Sydney, Australia, 1999; p. 310. available at http://www.unsworks.unsw.edu.au and http://handle.unsw.edu.au/1959.4/17482.Search in Google Scholar
24. Payne, T. E., Davis, J. A., Lumpkin, G. R., Chisari, R., Waite, T. D. Surface complexation model of uranyl sorption on Georgia kaolinite. Appl. Clay Sci. 2004, 26, 151–162; https://doi.org/10.1016/j.clay.2003.08.013.Search in Google Scholar
25. Payne, T. E., Davis, J. A., Waite, T. D. Uranium retention by weathered schists – the role of iron minerals. Radiochim. Acta 1994, 66–67, 297–303; https://doi.org/10.1524/ract.1994.6667.s1.297.Search in Google Scholar
26. Parks, G. A., De Bruyn, P. L. The zero point of charge of oxides. J. Phys. Chem. 1962, 66, 967–973; https://doi.org/10.1021/j100812a002.Search in Google Scholar
27. Westall, J., Hohl, H. A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interface Sci. 1980, 12, 265–294; https://doi.org/10.1016/0001-8686(80)80012-1.Search in Google Scholar
28. Payne, T. E., Brendler, V., Ochs, M., Baeyens, B., Brown, P. L., Davis, J. A., Ekberg, C., Kulik, D. A., Lutzenkirchen, J., Missana, T., Tachi, Y., Van Loon, L. R., Altmann, S. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environ. Model. Software 2013, 42, 143–156; https://doi.org/10.1016/j.envsoft.2013.01.002.Search in Google Scholar
29. Hennig, C., Reich, T., Dähn, R., Scheidegger, A. M. Structure of uranium sorption complexes at montmorillonite edge sites. Radiochim. Acta 2002, 90, 653–657; https://doi.org/10.1524/ract.2002.90.9-11_2002.653.Search in Google Scholar
30. Reich, T., Moll, H., Denecke, M. A., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Bucher, J. J., Kaltsoyannis, N., Edelstein, N. M., Shuh, D. K. Characterization of hydrous uranyl silicate by EXAFS. Radiochim. Acta 1996, 74, 219–223; https://doi.org/10.1524/ract.1996.74.special-issue.219.Search in Google Scholar
31. Dzombak, D. A., Morel, F. M. M. Surface Complexation Modelling: Hydrous Ferric Oxide; Wiley & Sons: New York, 1990.Search in Google Scholar
32. Davis, J. A., Kent, D. B. Surface complexation modeling in aqueous geochemistry. Rev. Mineral. 1990, 23, 177–260; https://doi.org/10.1515/9781501509131-009.Search in Google Scholar
33. Payne, T. E., Davis, J. A., Ochs, M., Olin, M., Tweed, C. J. Uranium adsorption on weathered schist–intercomparison of modelling approaches. Radiochim. Acta 2004, 92, 651–661; https://doi.org/10.1524/ract.92.9.651.54992.Search in Google Scholar
34. Ochs, M., Payne, T. E., Brendler, V. Thermodynamic Sorption Modelling in Support of Radioactive Waste Disposal Safety Cases – A Guideline Document; Nuclear Energy Agency: Paris, 2012.Search in Google Scholar
35. Nair, R. N., Krishnamoorthy, T. M. Probabilistic safety assessment model for near surface radioactive waste disposal facilities. Environ. Model. Software 1999, 14, 447–460; https://doi.org/10.1016/s1364-8152(98)00090-5.Search in Google Scholar
36. Ochs, M., Davis, J. A., Olin, M., Payne, T. E., Tweed, C. J., Askarieh, M. M., Altmann, S. Use of thermodynamic sorption models to derive radionuclide K-d values for performance assessment: selected results and recommendations of the NEA sorption project. Radiochim. Acta 2006, 94, 779–785; https://doi.org/10.1524/ract.2006.94.9-11.779.Search in Google Scholar
37. Qaim, S. M. Fifty years of Radiochimica Acta: a brief overview. Radiochim. Acta 2012, 100, 483–492; https://doi.org/10.1524/ract.2012.1956.Search in Google Scholar
38. Maya, L. Sorbed uranium(VI) species on hydrous titania, zirconia, and silica gel. Radiochim. Acta 1982, 31, 147–152; https://doi.org/10.1524/ract.1982.31.34.147.Search in Google Scholar
39. Křepelová, A., Sachs, S., Bernhard, G. Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid. Radiochim. Acta 2006, 94, 825–833.10.1524/ract.2006.94.12.825Search in Google Scholar
40. Bachmaf, S., Planer-Friedrich, B., Merkel, B. J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite. Radiochim. Acta 2008, 96, 359–366; https://doi.org/10.1524/ract.2008.1496.Search in Google Scholar
41. Wang, X. K., Chen, C. L., Zhou, X., Tan, X. L., Hu, W. P. Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim. Acta 2005, 93, 273–278; https://doi.org/10.1524/ract.93.5.273.64279.Search in Google Scholar
42. Lieser, K. H., Quandt-Klenk, S., Thybusch, B. Sorption of uranyl ions on hydrous silicon dioxide. Radiochim. Acta 1992, 57, 45–50; https://doi.org/10.1524/ract.1992.57.1.45.Search in Google Scholar
43. Carroll, S. A., Bruno, J., Petit, J. C., Dran, J. C. Interactions of U(VI), Nd, and Th(IV) at the Calcite-solution interface. Radiochim. Acta 1992, 58–59, 245–252; https://doi.org/10.1524/ract.1992.5859.2.245.Search in Google Scholar
44. Schmeide, K., Pompe, S., Bubner, M., Heise, K. H., Bernhard, G., Nitsche, H. Uranium(VI) sorption onto phyllite and selected minerals in the presence of humic acid. Radiochim. Acta 2000, 88, 723–728; https://doi.org/10.1524/ract.2000.88.9-11.723.Search in Google Scholar
45. Waite, T. D., Davis, J. A., Fenton, B. R., Payne, T. E. Approaches to modelling uranium(VI) adsorption on natural mineral assemblages. Radiochim. Acta 2000, 88, 687–693; https://doi.org/10.1524/ract.2000.88.9-11.687.Search in Google Scholar
46. Payne, T. E., Waite, T. D. Surface complexation modelling of uranium sorption data obtained by isotope exchange techniques. Radiochim. Acta 1991, 52–53, 487–494; https://doi.org/10.1524/ract.1991.5253.2.487.Search in Google Scholar
47. Ticknor, K. V. Uranium sorption on geological materials. Radiochim. Acta 1994, 64, 229–236; https://doi.org/10.1524/ract.1994.64.34.229.Search in Google Scholar
48. Hsi, C.-K. D., Langmuir, D. Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochem. Cosmochim. Acta 1985, 49, 1931–1941; https://doi.org/10.1016/0016-7037(85)90088-2.Search in Google Scholar
49. Brachmann, A., Geipel, G., Bernhard, G., Nitsche, H. Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 2002, 90, 147–153; https://doi.org/10.1524/ract.2002.90.3_2002.147.Search in Google Scholar
50. Czerwinski, K. R., Buckau, G., Kim, J. I., Scherbaum, F. Complexation of the uranyl ion with aquatic humic acid. Radiochim. Acta 1994, 65, 111–120; https://doi.org/10.1524/ract.1994.65.2.111.Search in Google Scholar
51. Kim, J. I., Czerwinski, K. R. Complexation of metal ions with humic acid: metal ion charge neutralization model. Radiochim. Acta 1996, 73, 5–10; https://doi.org/10.1524/ract.1996.73.1.5.Search in Google Scholar
52. Hennig, C., Panak, P. J., Reich, T., Roßberg, A., Raff, J., Selenska-Pobell, S., Bernhard, G., Nitsche, H., Matz, W., Bucher, J. J., Panak, P. J., Nitsche, H. EXAFS investigation of uranium(VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim. Acta 2001, 89, 625–631; https://doi.org/10.1524/ract.2001.89.10.625.Search in Google Scholar
53. Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T. Nagra/PSI chemical thermodynamic data base 01/01. Radiochim. Acta 2002, 90, 805–813; https://doi.org/10.1524/ract.2002.90.9-11_2002.805.Search in Google Scholar
54. Kim, J. I. Actinide colloid generation in groundwater. Radiochim. Acta 1991, 52-53, 71–82; https://doi.org/10.1524/ract.1991.5253.1.71.Search in Google Scholar
55. Geipel, G., Brachmann, A., Brendler, V., Bernhard, G., Nitsche, H. Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 1996, 75, 199–204; https://doi.org/10.1524/ract.1996.75.4.199.Search in Google Scholar
56. Francis, A. J., Gillow, J. B., Dodge, C. J., Harris, R., Beveridge, T. J., Papenguth, H. W. Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochim. Acta 2004, 92, 481–488; https://doi.org/10.1524/ract.92.8.481.39281.Search in Google Scholar
57. Kaplan, D. I., Bertsch, P. M., Adriano, D. C., Orlandini, K. A. Actinide association with groundwater colloids in a Coastal plain aquifer. Radiochim. Acta 1994, 66–67, 181–188; https://doi.org/10.1524/ract.1994.6667.s1.181.Search in Google Scholar
58. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., Landa, E. R. Microbial reduction of uranium. Nature 1991, 350, 413–416; https://doi.org/10.1038/350413a0.Search in Google Scholar
59. Francis, A. J., Dodge, C. J., Gillow, J. B., Cline, J. E. Microbial transformations of uranium in wastes. Radiochim. Acta 1991, 52–53, 311–316; https://doi.org/10.1524/ract.1991.5253.2.311.Search in Google Scholar
60. Zhang, C., Liu, X., Tinnacher, R. M., Tournassat, C. Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics-surface complexation modeling approach. Environ. Sci. Technol. 2018, 52, 8501–8509; https://doi.org/10.1021/acs.est.8b02504.Search in Google Scholar PubMed
61. Kobayashi, Y., Fukushi, K., Kosugi, S. A robust model for prediction of U(VI) adsorption onto ferrihydrite consistent with spectroscopic observations. Environ. Sci. Technol. 2020, 54, 2304–2313; https://doi.org/10.1021/acs.est.9b06556.Search in Google Scholar PubMed
62. Richter, C., Müller, K., Drobot, B., Steudtner, R., Großmann, K., Stockmann, M., Brendler, V. Macroscopic and spectroscopic characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+. Geochem. Cosmochim. Acta 2016, 189, 143–157; https://doi.org/10.1016/j.gca.2016.05.045.Search in Google Scholar
63. Müller, K., Foerstendorf, H., Meusel, T., Brendler, V., Lefèvre, G., Comarmond, M. J., Payne, T. E. Sorption of U(VI) at the TiO2-water interface: an in situ vibrational spectroscopic study. Geochem. Cosmochim. Acta 2012, 76, 191–205.10.1016/j.gca.2011.10.004Search in Google Scholar
64. Liu, C., Shang, J., Kerisit, S., Zachara, J. M., Zhu, W. Scale-dependent rates of uranyl surface complexation reaction in sediments. Geochem. Cosmochim. Acta 2013, 105, 326–341; https://doi.org/10.1016/j.gca.2012.12.003.Search in Google Scholar
65. McBriarty, M. E., Kerisit, S., Bylaska, E. J., Shaw, S., Morris, K., Ilton, E. S. Iron vacancies accommodate uranyl incorporation into hematite. Environ. Sci. Technol. 2018, 52, 6282–6290; https://doi.org/10.1021/acs.est.8b00297.Search in Google Scholar PubMed
66. Comarmond, M. J., Steudtner, R., Stockmann, M., Heim, K., Müller, K., Brendler, V., Payne, T. E., Foerstendorf, H. The sorption processes of U(VI) onto SiO2 in the presence of phosphate: from binary surface species to precipitation. Environ. Sci. Technol. 2016, 50, 11610–11618; https://doi.org/10.1021/acs.est.6b02075.Search in Google Scholar PubMed
67. Massey, M. S., Lezama-Pacheco, J. S., Nelson, J. M., Fendorf, S., Maher, K. Uranium incorporation into amorphous silica. Environ. Sci. Technol. 2014, 48, 8636–8644; https://doi.org/10.1021/es501064m.Search in Google Scholar PubMed
68. Marshall, T. A., Morris, K., Law, G. T. W., Livens, F. R., Mosselmans, J. F. W., Bots, P., Shaw, S. Incorporation of uranium into hematite during crystallization from ferrihydrite. Environ. Sci. Technol. 2014, 48, 3724–3731; https://doi.org/10.1021/es500212a.Search in Google Scholar PubMed PubMed Central
69. Pan, Z., Giammar, D. E., Mehta, V., Troyer, L. D., Catalano, J. G., Wang, Z. Phosphate-induced immobilization of uranium in Hanford sediments. Environ. Sci. Technol. 2016, 50, 13486–13494; https://doi.org/10.1021/acs.est.6b02928.Search in Google Scholar PubMed
70. Salome, K. R., Beazley, M. J., Webb, S. M., Sobecky, P. A., Taillefert, M. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils. Geochem. Cosmochim. Acta 2017, 197, 27–42; https://doi.org/10.1016/j.gca.2016.10.008.Search in Google Scholar
71. Troyer, L. D., Maillot, F., Wang, Z., Wang, Z., Mehta, V. S., Giammar, D. E., Catalano, J. G. Effect of phosphate on U(VI) sorption to montmorillonite: ternary complexation and precipitation barriers. Geochem. Cosmochim. Acta 2016, 175, 86–99; https://doi.org/10.1016/j.gca.2015.11.029.Search in Google Scholar
72. Tsarev, S., Waite, T. D., Collins, R. N. Uranium reduction by Fe(II) in the presence of montmorillonite and nontronite. Environ. Sci. Technol. 2016, 50, 8223–8230; https://doi.org/10.1021/acs.est.6b02000.Search in Google Scholar PubMed
73. Stewart, B. D., Cismasu, A. C., Williams, K. H., Peyton, B. M., Nico, P. S. Reactivity of uranium and ferrous iron with natural iron oxyhydroxides. Environ. Sci. Technol. 2015, 49, 10357–10365; https://doi.org/10.1021/acs.est.5b02645.Search in Google Scholar PubMed
74. Chakraborty, S., Favre, F., Banerjee, D., Scheinost, A. C., Mullet, M., Ehrhardt, J. J., Brendle, J., Vidal, L., Charlet, L. U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ. Sci. Technol. 2010, 44, 3779–3785; https://doi.org/10.1021/es903493n.Search in Google Scholar PubMed
75. Massey, M. S., Lezama-Pacheco, J. S., Jones, M. E., Ilton, E. S., Cerrato, J. M., Bargar, J. R., Fendorf, S. Competing retention pathways of uranium upon reaction with Fe(II). Geochem. Cosmochim. Acta 2014, 142, 166–185; https://doi.org/10.1016/j.gca.2014.07.016.Search in Google Scholar
76. Stewart, B. D., Mayes, M. A., Fendorf, S. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ. Sci. Technol. 2010, 44, 928–934; https://doi.org/10.1021/es902194x.Search in Google Scholar PubMed
77. Ma, J., Zhang, Y., Collins, R. N., Tsarev, S., Aoyagi, N., Kinsela, A. S., Jones, A. M., Waite, T. D. Flow-electrode CDI Removes the uncharged Ca-UO2-CO3 ternary complex from brackish potable groundwater: complex dissociation, transport, and sorption. Environ. Sci. Technol. 2019, 53, 2739–2747; https://doi.org/10.1021/acs.est.8b07157.Search in Google Scholar PubMed
78. Guo, Z. J., Su, H. Y., Wu, W. S. Sorption and desorption of uranium(VI) on silica: experimental and modeling studies. Radiochim. Acta 2009, 97, 133–140; https://doi.org/10.1524/ract.2009.1589.Search in Google Scholar
79. Nebelung, C., Brendler, V. U(VI) sorption on granite: prediction and experiments. Radiochim. Acta 2010, 98, 621–625; https://doi.org/10.1524/ract.2010.1762.Search in Google Scholar
80. Romero-González, M. R., Cheng, T., Barnett, M. O., Roden, E. E. Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption. Radiochim. Acta 2007, 95, 251–259.10.1524/ract.2007.95.5.251Search in Google Scholar
81. Kar, A. S., Saha, A., Chandane, A., Kumar, S., Tomar, B. S. Effect of carbonate on U(VI) sorption by nano-crystalline α-MnO2. Radiochim. Acta 2018, 106, 191–205; https://doi.org/10.1515/ract-2017-2817.Search in Google Scholar
82. Verma, P. K., Pathak, P., Mohapatra, M., Yadav, A. K., Jha, S., Bhattacharyya, D., Mohapatra, P. K. Spectroscopic investigations on sorption of uranium onto suspended bentonite: effects of pH, ionic strength and complexing anions. Radiochim. Acta 2015, 103, 293–303; https://doi.org/10.1515/ract-2014-2309.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences