Startseite Naturwissenschaften Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives

  • Jian-hui Lan , Shi-lin Jiang , Ya-lan Liu , Xue-miao Yin , Ya-xing Wang , Tai-qi Yin , Shu-ao Wang , Cong-zhi Wang , Wei-qun Shi EMAIL logo und Zhi-fang Chai
Veröffentlicht/Copyright: 25. September 2019

Abstract

Developing necessary reprocessing techniques to meet the remarkable increase of spent nuclear fuels (SNFs) is crucial for the sustainable development of nuclear energy. This review summarizes recent research progresses related to the SNF reprocessing in China, with an emphasis on actinides separation over lanthanides through three different techniques, hydrometallurgical reprocessing, pyrometallurgical processes, and selective crystallization based separation. Some future perspectives with respect to advanced actinide separation are also given.

Award Identifier / Grant number: 21790373

Award Identifier / Grant number: 51604252

Award Identifier / Grant number: 91426302

Funding statement: This work was supported by the Major Program of National Natural Science Foundation of China (No. 21790373) and the general programs of National Natural Science Foundation of China (No. 51604252) and the Major Research Plan “Breeding and Transmutation of Nuclear Fuel in Advanced Nuclear Fission Energy System” of the Natural Science Foundation of China (No. 91426302).

References

1. International Atomic Energy Agency. Spent fuel reprocessing options. International Atomic Energy Agency, Vienna, Austria (2009).Suche in Google Scholar

2. Hudson, M. J., Harwood, L. M., Laventine, D. M., Lewis, F. W.: Use of soft heterocyclic N-Donor ligands to separate actinides and lanthanides. Inorg. Chem. 52, 3414 (2013).10.1021/ic3008848Suche in Google Scholar PubMed

3. Panak, P. J., Geist, A.: Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-Donor ligands. Chem. Rev. 113, 1199 (2013).10.1021/cr3003399Suche in Google Scholar PubMed

4. Kolarik, Z.: Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem. Rev. 108, 4208 (2008).10.1021/cr078003iSuche in Google Scholar PubMed

5. Nash, K. L., Madic, C., Mathur, J. N., Lacquement, J.: Actinide separation science and technology. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, Dordrecht (2011), p. 2622.10.1007/978-94-007-0211-0_24Suche in Google Scholar

6. Ekberg, C., Fermvik, A., Retegan, T., Skarnemark, G., Foreman, M., Hudson, M., Englund, S., Nilsson, M.: An overview and historical look back at the solvent extraction using nitrogen donor ligands to extract and separate An (III) from Ln (III). Radiochim. Acta 96, 225 (2008).10.1524/ract.2008.1483Suche in Google Scholar

7. Neidig, M. L., Clark, D. L., Martin, R. L.: Covalency in f-element complexes. Coord. Chem. Rev. 257, 394 (2013).10.1016/j.ccr.2012.04.029Suche in Google Scholar

8. Vallet, V., Macak, P., Wahlgren, U., Grenthe, I.: Actinide chemistry in solution, quantum chemical methods and models. Theor. Chem. Acc. 115, 145 (2006).10.1007/s00214-005-0051-7Suche in Google Scholar

9. Schreckenbach, G., Shamov, G. A.: Theoretical actinide molecular science. Accounts Chem. Res. 43, 19 (2010).10.1021/ar800271rSuche in Google Scholar PubMed

10. Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P., Bursten, B. E. Theoretical studies of the electronic structure of compounds of the actinide elements. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, Dordrecht, (2011), p. 1893.10.1007/978-94-007-0211-0_17Suche in Google Scholar

11. Pepper, M., Bursten, B. E.: The Electronic-structure of actinide-containing molecules – a challenge to applied quantum-chemistry. Chem. Rev. 91, 719 (1991).10.1021/cr00005a005Suche in Google Scholar

12. Lan, J. H., Shi, W. Q., Yuan, L. Y., Zhao, Y. L., Li, J., Chai, Z. F.: Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg. Chem. 50, 9230 (2011).10.1021/ic200078jSuche in Google Scholar PubMed

13. Lan, J. H., Shi, W. Q., Yuan, L. Y., Feng, Y. X., Zhao, Y. L., Chai, Z. F.: Thermodynamic study on the complexation of Am(III) and Eu(III) with tetradentate nitrogen ligands: a probe of complex species and reactions in aqueous solution. J. Phys. Chem. A 116, 504 (2012).10.1021/jp206793fSuche in Google Scholar PubMed

14. Lan, J. H., Shi, W. Q., Yuan, L. Y., Li, J., Zhao, Y. L., Chai, Z. F.: Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord. Chem. Rev. 256, 1406 (2012).10.1016/j.ccr.2012.04.002Suche in Google Scholar

15. Xiao, C. L., Wang, C. Z., Lan, J. H., Yuan, L. Y., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Selective separation of Am(III) from Eu(III) by 2,9-Bis(dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthrolines: a relativistic quantum chemistry study. Radiochim. Acta 102, 875 (2014).10.1515/ract-2014-2246Suche in Google Scholar

16. Lan, J. H., Wang, C. Z., Wu, Q. Y., Wang, S. A., Feng, Y. X., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: A Quasi-relativistic density functional theory study of the Actinyl(VI, V) (An=U, Np, Pu) complexes with a six-membered macrocycle containing Pyrrole, Pyridine, and Furan subunits. J. Phys. Chem. A 119, 9178 (2015).10.1021/acs.jpca.5b06370Suche in Google Scholar PubMed

17. Wu, H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Liu, Z. R., Chai, Z. F., Shi, W. Q.: Theoretical insights into the separation of Am(III) over Eu(III) with PhenBHPPA. Dalton Trans. 44, 16737 (2015).10.1039/C5DT02528ASuche in Google Scholar PubMed

18. Wu, H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Liu, Z. R., Chai, Z. F., Shi, W. Q.: New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study. Dalton Trans. 45, 8107 (2016).10.1039/C6DT00296JSuche in Google Scholar PubMed

19. Kong, X. H., Wu, Q. Y., Wang, C. Z., Lan, J. H., Chai, Z. F., Nie, C. M., Shi, W. Q.: Insight into the extraction mechanism of americium(III) over Europium(III) with pyridylpyrazole: a relativistic quantum chemistry study. J. Phys. Chem. A 122, 4499 (2018).10.1021/acs.jpca.8b00177Suche in Google Scholar PubMed

20. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Desreux, J. F., Vidick, G., Bouslimani, N., Modolo, G., Wilden, A., Sypula, M., Vu, T.-H., Simonin, J.-P.: Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J. Am. Chem. Soc. 133, 13093 (2011).10.1021/ja203378mSuche in Google Scholar PubMed

21. Xiao, C. L., Wu, Q. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Sci. China Chem. 57, 1439 (2014).10.1007/s11426-014-5215-7Suche in Google Scholar

22. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Understanding Am3+/Cm3+ separation with H(4)TPAEN and its hydrophilic derivatives: a quantum chemical study. Phys. Chem. Chem. Phys. 20, 14031 (2018).10.1039/C7CP08441BSuche in Google Scholar

23. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Uncovering the impact of ‘capsule’ shaped amine-type ligands on Am(III)/Eu(III) separation. Phys. Chem. Chem. Phys. 20, 1030 (2018).10.1039/C7CP05381ASuche in Google Scholar PubMed

24. Xiao, C. L., Wang, C. Z., Yuan, L. Y., Li, B., He, H., Wang, S., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Excellent selectivity for actinides with a Tetradentate 2,9-Diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg. Chem. 53, 1712 (2014).10.1021/ic402784cSuche in Google Scholar PubMed

25. Xiao, C. L., Wang, C. Z., Mei, L., Zhang, X. R., Wall, N., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation. Dalton Trans. 44, 14376 (2015).10.1039/C5DT01766ASuche in Google Scholar

26. Xiao, C. L., Wu, Q. Y., Mei, L., Yuan, L. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: High selectivity towards small copper ions by a preorganized phenanthroline-derived tetradentate ligand and new insight into the complexation mechanism. Dalton Trans. 43, 12470 (2014).10.1039/C4DT01489HSuche in Google Scholar

27. Zhang, X. R., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO22+ extraction. Sep. Purif. Technol. 168, 232 (2016).10.1016/j.seppur.2016.05.056Suche in Google Scholar

28. Xiao, C. L., Wu, Q. Y., Wang, C. Z., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg. Chem. 53, 10846 (2014).10.1021/ic500816zSuche in Google Scholar PubMed

29. Wu, Q. Y., Song, Y. T., Ji, L., Wang, C. Z., Chai, Z. F., Shi, W. Q.: Theoretically unraveling the separation of Am(III)/Eu(III): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Phys. Chem. Chem. Phys. 19, 26969 (2017).10.1039/C7CP04625ASuche in Google Scholar PubMed

30. Wang, C. Z., Shi, W. Q., Lan, J. H., Zhao, Y. L., Wei, Y. Z., Chai, Z. F.: Complexation behavior of Eu(III) and Am(III) with CMPO and Ph2CMPO ligands: insights from density functional theory. Inorg. Chem. 52, 10904 (2013).10.1021/ic400895dSuche in Google Scholar PubMed

31. Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Wang, X. K., Chai, Z. F., Shi, W. Q.: Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Trans. 43, 8713 (2014).10.1039/c4dt00032cSuche in Google Scholar PubMed

32. Luo, J., Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Chai, Z. F., Nie, C. M., Shi, W. Q.: Theoretical studies on the AnO(2)(n+) (An=U, Np; n=1, 2) complexes with di-(2-ethylhexyl) phosphoric acid. Dalton Trans. 44, 3227 (2015).10.1039/C4DT03321CSuche in Google Scholar PubMed

33. Luo, J., Wang, C. Z., Lan, J. H., Wu, Q. Y., Zhao, Y. L., Chai, Z. F., Nie, C. M., Shi, W. Q.: Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Sci. China Chem. 59, 324 (2016).10.1007/s11426-015-5489-4Suche in Google Scholar

34. Huang, P. W., Wang, C. Z., Wu, Q. Y., Lan, J. H., Song, G., Chai, Z. F., Shi, W. Q.: Theoretical studies on the synergistic extraction of Am3+ and Eu3+ with CMPO-HDEHP and CMPO-HEH EHP systems. Dalton Trans. 47, 5474 (2018).10.1039/C8DT00134KSuche in Google Scholar

35. Su, L. L., Liu, K., Liu, Y. L., Wang, L., Yuan, L. Y., Wang, L., Li, Z. J., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochim. Acta 147, 87 (2014).10.1016/j.electacta.2014.09.095Suche in Google Scholar

36. Liu, K., Tang, H. B., Pang, J. W., Liu, Y. L., Feng, Y. X., Chai, Z. F., Shi, W. Q.: Electrochemical properties of uranium on the liquid gallium electrode in LiCl-KCl eutectic. J. Electrochem. Soc. 163, D554 (2016).10.1149/2.1191609jesSuche in Google Scholar

37. Liu, Y. L., Liu, K., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry. Faraday Discuss. 190, 387 (2016).10.1039/C5FD00220FSuche in Google Scholar PubMed

38. Liu, Y. L., Yan, Y. D., Han, W., Zhang, M. L., Yuan, L. Y., Lin, R. S., Ye, G. A., He, H., Chai, Z. F., Shi, W. Q.: Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl. Electrochim. Acta 114, 180 (2013).10.1016/j.electacta.2013.09.154Suche in Google Scholar

39. Liu, Y. L., Yuan, L. Y., Ye, G. A., Kui, L., Zhu, L., Zhang, M. L., Chai, Z. F., Shi, W. Q.: Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochim. Acta 147, 104 (2014).10.1016/j.electacta.2014.08.114Suche in Google Scholar

40. Sedmidubsky, D., Konings, R. J. M., Soucek, P.: Ab-initio calculations and phase diagram assessments of An-Al systems (An=U, Np, Pu). J. Nucl. Mater. 397, 1 (2010).10.1016/j.jnucmat.2009.11.023Suche in Google Scholar

41. Cassayre, L., Caravaca, C., Jardin, R., Malmbeck, R., Masset, P., Mendes, E., Serp, J., Soucek, P., Glatz, J. P.: On the formation of U-Al alloys in the molten LiCl-KCl eutectic. J. Nucl. Mater. 378, 79 (2008).10.1016/j.jnucmat.2008.05.004Suche in Google Scholar

42. Soucek, P., Malmbeck, R., Mendes, E., Nourry, C., Sedmidubsky, D., Glatz, J. P.: Study of thermodynamic properties of Np-Al alloys in molten LiCl-KCl eutectic. J. Nucl. Mater. 394, 26 (2009).10.1016/j.jnucmat.2009.08.003Suche in Google Scholar

43. Mendes, E., Malmbeck, R., Nourry, C., Soucek, P., Glatz, J. P.: On the electrochemical formation of Pu-Al alloys in molten LiCl-KCl. J. Nucl. Mater. 420, 424 (2012).10.1016/j.jnucmat.2011.09.017Suche in Google Scholar

44. Soucek, P., Malmbeck, R., Nourry, C., Glatz, J. P.: Pyrochemical Reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes. In: B. Raj, P. R. V. Rao, K. V. G. Kutty, U. K. Mudali (Eds.), Asian Nuclear Prospects 2010, vol. 7. Energy Procedia (2011), p. 396.10.1016/j.egypro.2011.06.052Suche in Google Scholar

45. Liu, K., Liu, Y. L., Yuan, L. Y., Wang, L., Wang, L., Li, Z. J., Chai, Z. F., Shi, W. Q.: Thermodynamic and electrochemical properties of holmium and HoxAly intermetallic compounds in the LiCl-KCl eutectic. Electrochim. Acta 174, 15 (2015).10.1016/j.electacta.2015.05.161Suche in Google Scholar

46. Liu, K., Liu, Y. L., Yuan, L. Y., He, H., Yang, Z. Y., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electroextraction of samarium from Sm2O3 in chloride melts. Electrochim. Acta 129, 401 (2014).10.1016/j.electacta.2014.02.136Suche in Google Scholar

47. Liu, K., Liu, Y. L., Yuan, L. Y., Zhao, X. L., Chai, Z. F., Shi, W. Q.: Electroextraction of gadolinium from Gd2O3 in LiCl-KCl-AlCl3 molten salts. Electrochim. Acta 109, 732 (2013).10.1016/j.electacta.2013.07.084Suche in Google Scholar

48. Liu, K., Liu, Y. L., Yuan, L. Y., Zhao, X. L., He, H., Ye, G. A., Chai, Z. F., Shi, W. Q.: Electrochemical formation of erbium-aluminum alloys from erbia in the chloride melts. Electrochim. Acta 116, 434 (2014).10.1016/j.electacta.2013.11.093Suche in Google Scholar

49. Liu, K., Yuan, L. Y., Liu, Y. L., Zhao, X. L., He, H., Ye, G. A., Chai, Z. F., Shi, W. Q.: Electrochemical reactions of the Th4+/Th couple on the tungsten, aluminum and bismuth electrodes in chloride molten salt. Electrochim. Acta 130, 650 (2014).10.1016/j.electacta.2014.03.085Suche in Google Scholar

50. Liu, Y. L., Liu, K., Luo, L. X., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt. Electrochim. Acta 275, 100 (2018).10.1016/j.electacta.2018.04.140Suche in Google Scholar

51. Liu, Y.-L., Yan, Y. D., Han, W., Zhang, M. L., Yuan, L. Y., Liu, K., Ye, G. A., He, H., Chai, Z. F., Shi, W. Q.: Extraction of thorium from LiCl-KCl molten salts by forming Al-Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels. RSC Adv. 3, 23539 (2013).10.1039/c3ra43292kSuche in Google Scholar

52. Liu, Y. L., Ye, G. A., Yuan, L. Y., Liu, K., Feng, Y. X., Li, Z. J., Chai, Z. F., Shi, W. Q.: Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochim. Acta 158, 277 (2015).10.1016/j.electacta.2015.01.128Suche in Google Scholar

53. Luo, L. X., Liu, Y. L., Liu, N., Liu, K., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al-Tb alloy formation mechanism in LiCl-KCl melt. RSC Adv. 5, 69134 (2015).10.1039/C5RA11708ASuche in Google Scholar

54. Wang, L., Liu, Y. L., Liu, K., Tang, S. L., Yuan, L. Y., Su, L. L., Chai, Z. F., Shi, W. Q.: Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCI-KCI. Electrochim. Acta 147, 385 (2014).10.1016/j.electacta.2014.08.113Suche in Google Scholar

55. Li, B., Liu, K., Pang, J. W., Yuan, L. Y., Liu, Y. L., Lin, M. Z.: Electrochemical properties of gadolinium on liquid gallium electrode in LiCI-KCI eutectic. J. Rare Earth 36, 656 (2018).10.1016/j.jre.2017.11.014Suche in Google Scholar

56. Liu, K., Liu, Y. L., Chai, Z. F., Shi, W. Q.: Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J. Electrochem. Soc. 164, D169 (2017).10.1149/2.0511704jesSuche in Google Scholar

57. Pang, J. W., Liu, K., Liu, Y. L., Nie, C. M., Luo, L. X., Yuan, L. Y., Chai, Z. F., Shi, W. Q.: Electrochemical properties of lanthanum on the liquid gallium electrode in LiCl-KCl Eutectic. J. Electrochem. Soc. 163, D750 (2016).10.1149/2.0611614jesSuche in Google Scholar

58. Novoselova, A., Smolenski, V., Volkovich, V. A., Ivanov, A. B., Osipenko, A., Griffiths, T. R.: Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system. J. Nucl. Mater. 466, 373 (2015).10.1016/j.jnucmat.2015.08.010Suche in Google Scholar

59. Smolenski, V., Novoselova, A., Osipenko, A., Maershin, A.: Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim. Acta 145, 81 (2014).10.1016/j.electacta.2014.08.081Suche in Google Scholar

60. Smolenski, V., Novoselova, A., Osipenko, A., Kormilitsyn, M., Luk’yanova, Y.: Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases. Electrochim. Acta 133, 354 (2014).10.1016/j.electacta.2014.04.042Suche in Google Scholar

61. Soucek, P., Malmbeck, R., Mendes, E., Nourry, C., Glatz, J. P.: Exhaustive electrolysis for recovery of actinides from molten LiCl-KCl using solid aluminium cathodes. J. Radioanal. Nucl. Chem. 286, 823 (2010).10.1007/s10967-010-0739-6Suche in Google Scholar

62. Myerson, A. Handbook of industrial crystallization. Butterworth-Heinemann, Oxford, UK (2001).Suche in Google Scholar

63. Polinski, M. J., Grant, D. J., Wang, S., Alekseev, E. V., Cross, J. N., Villa, E. M., Depmeier, W., Gagliardi, L., Albrecht-Schmitt, T. E.: Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682 (2012).10.1021/ja303804rSuche in Google Scholar PubMed

64. Polinski, M. J., Wang, S., Alekseev, E. V., Depmeier, W., Liu, G., Haire, R. G., Albrecht-Schmitt, T. E.: Curium(III) borate shows coordination environments of both plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 51, 1869 (2012).10.1002/anie.201107956Suche in Google Scholar PubMed

65. Cary, S. K., Vasiliu, M., Baumbach, R. E., Stritzinger, J. T., Green, T. D., Diefenbach, K., Cross, J. N., Knappenberger, K. L., Liu, G., Silver, M. A., DePrince, A. E., Polinski, M. J., Van Cleve, S. M., House, J. H., Kikugawa, N., Gallagher, A., Arico, A. A., Dixon, D. A., Albrecht-Schmitt, T. E.: Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6825 (2015).10.1038/ncomms7827Suche in Google Scholar PubMed PubMed Central

66. Silver, M. A., Cary, S. K., Johnson, J. A., Baumbach, R. E., Arico, A. A., Luckey, M., Urban, M., Wang, J. C., Polinski, M. J., Chemey, A., Liu, G., Chen, K.-W., Van Cleve, S. M., Marsh, M. L., Eaton, T. M., van de Burgt, L. J., Gray, A. L., Hobart, D. E., Hanson, K., Maron, L., Gendron, F., Autschbach, J., Speldrich, M., Koegerler, P., Yang, P., Braley, J., Albrecht-Schmitt, T. E.: Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, (2016).10.1126/science.aaf3762Suche in Google Scholar PubMed

67. Polinski, M. J., Wang, S., Alekseev, E. V., Depmeier, W., Albrecht-Schmitt, T. E.: Bonding changes in plutonium(III) and americium(III) Borates. Angew. Chem. Int. Ed. 50, 8891 (2011).10.1002/anie.201103502Suche in Google Scholar PubMed

68. Silver, M. A., Albrecht-Schmitt, T. E.: Evaluation of f-element borate chemistry. Coord. Chem. Rev. 323, 36 (2016).10.1016/j.ccr.2016.02.015Suche in Google Scholar

69. Yin, X. M., Wang, Y. X., Bai, X. J., Wang, Y. M., Chen, L. H., Xiao, C. L., Diwu, J., Du, S. Y., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. A.: Rare earth separations by selective borate crystallization. Nat. Commun. 8, 14438 (2017).10.1038/ncomms14438Suche in Google Scholar PubMed PubMed Central

70. Krishnamurthy, N., Gupta, C. K. Extractive Metallurgy of Rare Earths. CRC Press, Boca Raton, FL, USA (2015).10.1201/b19055Suche in Google Scholar

71. Wang, Y., Lu, H., Xing, D., Tao, D., Bai, X., Cai, Y., Yin, X., Chen, L., Juan, D., Du, S., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Ning, L., Shuao, W.: Facile and efficient decontamination of thorium from rare earths based on selective selenite crystallization. Inorg. Chem. 57, 1880 (2018).10.1021/acs.inorgchem.7b02681Suche in Google Scholar PubMed

Received: 2019-01-29
Accepted: 2019-08-28
Published Online: 2019-09-25
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3110/pdf
Button zum nach oben scrollen