Abstract
The use of α-emitting radionuclides in targeted alpha therapy (TAT) holds great potential for treatment of human diseases, such as cancer, due to the short pathlength and high potency of the α particle, which can localize damage to targeted cells while minimizing effects to healthy surrounding tissues. In this review several potential α-emitting radionuclides having emission properties applicable to TAT are discussed from a radiochemical point of view. Overviews of production, radiochemical separation and chelation aspects relative to developing TAT radiopharmaceuticals are provided for the α-emitting radionuclides (and their generator systems) 211At, 224Ra/212Pb/212Bi, 225Ac/213Bi, 227Th/223Ra, 230U/226Th, 149Tb and 255Fm.
References
1. Huclier-Markai, S., Alliot, C., Varmenot, N., Cutler, C. S., Barbet, J.: Alpha-emitters for immuno-therapy: a review of recent developments from chemistry to clinics. Curr. Top. Med. Chem. 23, 2642 (2012).10.2174/1568026611212230002Suche in Google Scholar PubMed
2. McDevitt, M. R., Sgouros, G., Sofou, S.: Targeted and nontargeted α-particle therapies. Annu. Rev. Biomed. Eng. 20, 73 (2018).10.1146/annurev-bioeng-062117-120931Suche in Google Scholar PubMed PubMed Central
3. Lacoeuille, F., Arlicot, N., Faivre-Chauvet, A.: Targeted alpha and beta radiotherapy: an overview of radiopharmaceutical and clinical aspects. Med. Nucl. 42, 32 (2018).10.1016/j.mednuc.2017.12.002Suche in Google Scholar
4. Makvandi, M., Dupis, E., Engle, J. W., Nortier, F. M., Fassbender, M. E., Simon, S., Birnbaum, E. R., Atcher, R. W., John, K. D., Rixe, O., Norenberg, J. P.: Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol. 13, 189 (2018).10.1007/s11523-018-0550-9Suche in Google Scholar PubMed
5. Marcu, L., Bezak, E., Allen, B. J.: Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hemat. 123, 7 (2018).10.1016/j.critrevonc.2018.01.001Suche in Google Scholar PubMed
6. Cornelissen, B., Vallis, K. A.: Targeting the nucleus: an overview of auger-electron radionuclide therapy. Curr. Drug Discov. Technol. 7, 263 (2010).10.2174/157016310793360657Suche in Google Scholar PubMed
7. Larson, S. M., Carrasquillo, J. A., Cheung, N.-K. V., Press, O. W.: Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347 (2015).10.1038/nrc3925Suche in Google Scholar PubMed PubMed Central
8. Jurcic, J. G., et al.: Targeted α particle immunotherapy for myeloid leukemia. Blood 100, 1233 (2002).10.1182/blood.V100.4.1233.h81602001233_1233_1239Suche in Google Scholar
9. Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J., Lewis, J. S.: α-Emitters for radiotherapy: from basic radiochemistry to clinical studies – part 2. J. Nucl. Med. 59, 1020 (2018).10.2967/jnumed.117.204651Suche in Google Scholar PubMed PubMed Central
10. Martins, C. D., Kramer-Marek, G., Oyen, W. J. G.: Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin. Drug Deliv. 15, 185 (2018).10.1080/17425247.2018.1378180Suche in Google Scholar PubMed
11. Kozempel, J., Mokhodoeva, O., Vlk, M.: Progress in targeted alpha-particle therapy. what we learned about recoils release from in vivo generators. Molecules 23, 581 (2018).10.3390/molecules23030581Suche in Google Scholar PubMed PubMed Central
12. Wadas, T. J., Pandya, D. N., Solingapuram Sai, K. K., Mintz, A.: Molecular targeted alpha-particle therapy for oncologic applications. AJR Am. J. Roentgenol. 203, 253 (2014).10.2214/AJR.14.12554Suche in Google Scholar PubMed PubMed Central
13. Elgqvist, J., Frost, S., Pouget, J. P., Albertsson, P.: The potential and hurdles of targeted alpha therapy – clinical trials and beyond. Front. Oncol. 3, 324/1 (2014).10.3389/fonc.2013.00324Suche in Google Scholar PubMed PubMed Central
14. Wilbur, D. S.: Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides. Curr. Radiopharm. 4, 214 (2011).10.2174/1874471011104030214Suche in Google Scholar PubMed
15. Birnbaum, E. R., Fassbender, M. E., Ferrier, M. G., John, K. D., Mastren, T.: Actinides in Medicine, Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd. (2018), p. 1.10.1002/9781119951438.eibc2563Suche in Google Scholar
16. Baum, R. P.: Therapeutic Nuclear Medicine (2014), Springer, Berlin, Heidelberg.10.1007/978-3-540-36719-2Suche in Google Scholar
17. Guseva, L. I.: Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine. Radiochemistry 56, 451 (2014).10.1134/S1066362214050014Suche in Google Scholar
18. Price, E. W., Orvig, C.: Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260 (2014).10.1039/C3CS60304KSuche in Google Scholar PubMed
19. Brechbiel, M. W.: Bifunctional chelates for metal nuclides. Q. J. Nucl. Med. Mol. Imaging 52, 166 (2008).Suche in Google Scholar
20. Tornesello, A. L., Buonaguro, L., Tornesello, M. L., Buonaguro, F. M.: New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules 22, 1282_1 (2017).10.3390/molecules22081282Suche in Google Scholar PubMed PubMed Central
21. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S.: Radiometals for combined imaging and therapy. Chem. Rev. 113, 858 (2013).10.1021/cr3003104Suche in Google Scholar PubMed
22. Jamous, M., Haberkorn, U., Mier, W.: Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 18, 3379 (2013).10.3390/molecules18033379Suche in Google Scholar PubMed PubMed Central
23. Dekempeneer, Y., Keyaerts, M., Krasniqi, A., Puttemans, J., Muyldermans, S., Lahoutte, T., D’Huyvetter, M., Devoogdt, N.: Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 16, 1035 (2016).10.1080/14712598.2016.1185412Suche in Google Scholar PubMed PubMed Central
24. Liko, F., Hindre, F., Fernandez-Megia, E.: Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 17, 3103 (2016).10.1021/acs.biomac.6b00929Suche in Google Scholar PubMed
25. National Nuclear Data Center. Brookhaven National Laboratory, 1994.Suche in Google Scholar
26. Meyer, G. J.: Astatine. J. Labelled Comp. Radiopharm. 61, 154 (2018).10.1002/jlcr.3573Suche in Google Scholar PubMed
27. Lahiri, S., Maiti, M.: Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim. Acta 100, 85 (2012).10.1524/ract.2011.1888Suche in Google Scholar
28. Hermanne, A., Tárkányi, F., Takács, S., Szücs, Z., Shubin, Y. N., Dityuk, A. I.: Experimental study of the cross-sections of alpha-particle induced reactions on 209Bi. Appl. Radiat. Isotopes 63, 1 (2005).10.1016/j.apradiso.2005.01.015Suche in Google Scholar PubMed
29. Zalutsky, M. R., Pruszynski, M.: Astatine-211: production and availability. Curr. Radiopharm. 4, 177 (2011).10.2174/1874471011104030177Suche in Google Scholar PubMed PubMed Central
30. Guérard, F., Gestin, J. F., Brechbiel, M. W.: Production of [211At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother. Radiopharm. 28, 1 (2013).10.1089/cbr.2012.1292Suche in Google Scholar PubMed PubMed Central
31. Gagnon, K., Risler, R., Pal, S., Hamlin, D., Orzechowski, J., Pavan, R., Zeisler, S., Wilbur, D. S.: Design and evaluation of an external high-current target for production of 211At. J. Labelled Comp. Radiopharm. 55, 436 (2012).10.1002/jlcr.2968Suche in Google Scholar
32. Qaim, S. M., Stöcklin, G.: Production of some medically important short-lived neutron-deficient radioisotopes of halogens. Radiochim. Acta 34, 25 (1983).10.1524/ract.1983.34.12.25Suche in Google Scholar
33. Crawford, J. R., Kunz, P., Yang, H., Schaffer, P., Ruth, T. J.: 211Rn/211At and 209At production with intense mass separated Fr ion beams for preclinical 211At-based α-therapy research. Appl. Radiat. Isotopes 122, 222 (2017).10.1016/j.apradiso.2017.01.035Suche in Google Scholar PubMed
34. Lindegren, S., Bäck, T., Jensen, H. J.: Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl. Radiat. Isotopes 55, 157 (2001).10.1016/S0969-8043(01)00044-6Suche in Google Scholar
35. Aneheim, E., Albertsson, P., Bäck, T., Jensen, H., Palm, S., Lindegren, S.: Automated astatination of biomolecules – a stepping stone towards multicenter clinical trials. Sci. Rep. 5, 12025_1 (2015).10.1038/srep12025Suche in Google Scholar PubMed PubMed Central
36. O’Hara, M. J., Krzysko, A. J., Niver, C. M., Morrison, S. S., Owsley, S. L., Jr., Hamlin, D. K., Dorman, E. F., Scott Wilbur, D.: An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211. Appl. Radiat. Isotopes 122, 202 (2017).10.1016/j.apradiso.2017.02.001Suche in Google Scholar PubMed
37. Balkin, E. R., Hamlin, D. K., Gagnon, K., Chyan, M.-K., Pal, S., Watanabe, S., Wilbur, D. S.: Evaluation of a wet chemistry method for isolation of cyclotron produced [211At]astatine. Appl. Sci. 3, 636 (2013).10.3390/app3030636Suche in Google Scholar
38. Zalutsky, M., Vaidyanathan, G.: Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr. Pharm. Des. 6, 1433 (2000).10.2174/1381612003399275Suche in Google Scholar PubMed
39. Wilbur, D. S.: [211At]Astatine-labeled compound stability: issues with released [211At]astatide and development of labeling reagents to increase stability. Curr. Radiopharm. 1, 144 (2008).10.2174/1874471010801030144Suche in Google Scholar
40. Couturier, O., Supiot, S., Degraef-Mougin, M., Faivre-Chauvet, A., Carlier, T., Chatal, J. F., Davodeau, F., Cherel, M.: Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. I. 32, 601 (2005).10.1007/s00259-005-1803-2Suche in Google Scholar PubMed
41. Wilbur, D. S., Hadley, S. W., Hylarides, M. D., Abrams, P. G., Beaumier, P. A., Morgan, A. C., Reno, J. M., Fritzberg, A. R.: Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. Med. 30, 216 (1989).Suche in Google Scholar
42. Wilbur, D. S.: Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconj. Chem. 3, 433 (1992).10.1021/bc00018a001Suche in Google Scholar PubMed
43. Zalutsky, M. R., Bigner, D. D.: Radioimmunotherapy with α-particle emitting radioimmunoconjugates. Acta Oncol. 35, 373 (1996).10.3109/02841869609101654Suche in Google Scholar PubMed
44. Wilbur, D. S., Chyan, M. K., Nakamae, H., Chen, Y., Hamlin, D. K., Santos, E. B., Kornblit, B. T., Sandmaier, B. M.: Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconj. Chem. 23, 409 (2012).10.1021/bc200401bSuche in Google Scholar PubMed PubMed Central
45. Zalutsky, M. R., Reardon, D. A., Akabani, G., Coleman, R. E., Friedman, A. H., Friedman, H. S., McLendon, R. E., Wong, T. Z., Bigner, D. D.: Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 49, 30 (2008).10.2967/jnumed.107.046938Suche in Google Scholar
46. Cederkrantz, E., Andersson, H., Bernhardt, P., Bäck, T., Hultborn, R., Jacobsson, L., Jensen, H., Lindegren, S., Ljungberg, M., Magnander, T., Palm, S., Albertsson, P.: Absorbed doses and risk estimates of 211At-MX35 F(ab′)2 in intraperitoneal therapy of ovarian cancer patients. Int. J. Radiat. Oncol. 93, 569 (2015).10.1016/j.ijrobp.2015.07.005Suche in Google Scholar
47. Reardon, D. A., Zalutsky, M. R., Bigner, D. D.: Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev. Anticancer 7, 675 (2007).10.1586/14737140.7.5.675Suche in Google Scholar
48. Andersson, H., Cederkrantz, E., Bäck, T., Divgi, C., Elgqvist, J., Himmelman, J., Horvath, G., Jacobsson, L., Jensen, H., Lindegren, S., Palm, S., Hultborn, R.: Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2 – a phase I study. J. Nucl. Med. 50, 1153 (2009).10.2967/jnumed.109.062604Suche in Google Scholar
49. Li, Y., Hamlin, D. K., Chyan, M. K., Wong, R., Dorman, E. F., Emery, R. C., Woodle, D. R., Manger, R. L., Nartea, M., Kenoyer, A. L., Orozco, J. J., Green, D. J., Press, O. W., Storb, R., Sandmaier, B. M., Wilbur, D. S.: cGMP production of astatine-211-labeled anti-CD45 antibodies for use in allogeneic hematopoietic cell transplantation for treatment of advanced hematopoietic malignancies. PLoS One 13, e0205135 (2018).10.1371/journal.pone.0205135Suche in Google Scholar
50. Atcher, R. W., Friedman, A. M., Hines, J. J.: An improved generator for the production of 212Pb and 212Bi from 224Ra. Appl. Radiat. Isotopes 39, 283 (1988).10.1016/0883-2889(88)90016-0Suche in Google Scholar
51. Hassfjell, S. P.: A 212Pb generator based on a 228Th source. Appl. Radiat. Isotopes 55, 433 (2001).10.1016/S0969-8043(00)00372-9Suche in Google Scholar
52. Mirzadeh, S.: Generator-produced alpha-emitters. Appl. Radiat. Isotopes 49, 345 (1998).10.1016/S0969-8043(97)00175-9Suche in Google Scholar
53. Westrom, S., Generalov, R., Bonsdorff, T. B., Larsen, R. H.: Preparation of 212Pb-labeled monoclonal antibody using a novel 224Ra-based generator solution. Nucl. Med. Biol. 51, 1 (2017).10.1016/j.nucmedbio.2017.04.005Suche in Google Scholar PubMed
54. Despotopulos, J. D., Kmak, K. N., Moody, K. J., Shaughnessy, D. A.: Development of a 212Pb and 212Bi generator for homolog studies of flerovium and moscovium. J. Radioanal. Nucl. Chem. 317, 473 (2018).10.1007/s10967-018-5848-7Suche in Google Scholar
55. Hassfjell, S., Brechbiel, M. W.: The development of the α-particle 212Bi and 213Bi and their decay chain related radionuclides, for therapeutic applications. Chem. Rev. 101, 2019 (2001).10.1021/cr000118ySuche in Google Scholar
56. Ruegg, C. L., Anderson-Berg, W. T., Brechbiel, M. W., Mirzadeh, S., Gansow, O. A., Strand, M.: Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 50, 4221 (1990).Suche in Google Scholar
57. Junghans, R. P., Brechbiel, M. W., Mirzadeh, S., Raubitschek, A. A., Gansow, O. A., Waldmann, T. A.: Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacylododecane tetraacetic acid (DOTA)-bismuth-conjugated anti-tac antibody for α-emitter (212Bi) therapy. Cancer Res. 53, 5683 (1993).Suche in Google Scholar
58. Kumar, K., Magerstädt, M., Gansow, O. A.: Lead(II) and bismuth(III) complexes of the polyazacycloalkane-N-acetic acids nota, dota and teta. J. Chem. Soc. Chem. Commun. 3, 145 (1989).10.1039/C39890000145Suche in Google Scholar
59. Bartos, B., Lyczko, K., Kasperek, A., Krajewski, S., Bilewicz, A.: Search of ligands suitable for 212Pb/212Bi in vivo generators. J. Radioanal. Nucl. Chem. 295, 205 (2013).10.1007/s10967-012-2238-4Suche in Google Scholar
60. Mirzadeh, S., Kumar, K., Gansow, O. A.: The chemical fate of 212Bi-DOTA formed by β− decay of 212Pb(DOTA)2−. Radiochim. Acta 60, 1 (1993).10.1524/ract.1993.60.1.1Suche in Google Scholar
61. Chappell, L. L., Dadachova, K., Milenic, D. E., Garmestani, K., Wu, C., Brechbiel, M. W.: Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol. 27, 93 (2000).10.1016/S0969-8051(99)00086-4Suche in Google Scholar
62. Confino, H., Hochman, I., Efrati, M., Schmidt, M., Umansky, V., Kelson, I., Keisari, Y.: Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol. Immunother. 64, 191 (2015).10.1007/s00262-014-1626-8Suche in Google Scholar PubMed
63. Yong, K. J., Milenic, D. E., Baidoo, K. E., Brechbiel, M. W.: Cell killing mechanisms and impact on gene expression by gemcitabine and 212Pb-trastuzumab treatment in a disseminated i.p. tumor model. PLoS One 11, e0159904 (2016).10.1371/journal.pone.0159904Suche in Google Scholar PubMed PubMed Central
64. Milenic, D. E., Baidoo, K. E., Kim, Y. S., Brechbiel, M. W.: Evaluation of cetuximab as a candidate for targeted alpha-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs 7, 255 (2015).10.4161/19420862.2014.985160Suche in Google Scholar PubMed PubMed Central
65. Milenic, D. E., Baidoo, K. E., Brechbiel, M. W.: Bench to bedside: stability studies of GMP produced trastuzumab-TCMC in support of a clinical trial. Pharmaceuticals (Basel) 8, 435 (2015).10.3390/ph8030435Suche in Google Scholar PubMed PubMed Central
66. Meredith, R. F., Torgue, J. J., Rozgaja, T. A., Banaga, E. P., Bunch, P. W., Alvarez, R. D., Straughn, J. M., Jr., Dobelbower, M. C., Lowy, A. M.: Safety and outcome measures of first-in-human intraperitoneal alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol. 41, 716 (2018).10.1097/COC.0000000000000353Suche in Google Scholar PubMed PubMed Central
67. Kasten, B. B., Arend, R. C., Katre, A. A., Kim, H., Fan, J., Ferrone, S., Zinn, K. R., Buchsbaum, D. J.: B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol. 47, 23 (2017).10.1016/j.nucmedbio.2017.01.003Suche in Google Scholar PubMed PubMed Central
68. Kasten, B. B., Gangrade, A., Kim, H., Fan, J., Ferrone, S., Ferrone, C. R., Zinn, K. R., Buchsbaum, D. J.: 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol. 58, 67 (2018).10.1016/j.nucmedbio.2017.12.004Suche in Google Scholar PubMed PubMed Central
69. Milenic, D. E., Kim, Y. S., Baidoo, K. E., Wong, K. J., Barkley, R., Delgado, J., Brechbiel, M. W.: Exploration of a F(ab′)2 fragment as the targeting agent of alpha-radiation therapy: a comparison of the therapeutic benefit of intraperitoneal and intravenous administered radioimmunotherapy. Cancer Biother. Radio. 33, 182 (2018).10.1089/cbr.2018.2434Suche in Google Scholar
70. Morgenstern, A., Bruchertseifer, F., Apostolidis, C.: Bismuth-213 and actinium-225 generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotope. Curr. Radiopharm. 5, 221 (2012).10.2174/1874471011205030221Suche in Google Scholar PubMed
71. Hogle, S., Boll, R. A., Murphy, K., Denton, D., Owens, A., Haverlock, T. J., Garland, M., Mirzadeh, S.: Reactor production of thorium-229. Appl. Radiat. Isotopes 114, 19 (2016).10.1016/j.apradiso.2016.05.002Suche in Google Scholar PubMed
72. Kuznetsov, R. A., Butkalyuk, P. S., Tarasov, V. A., Baranov, A. Y., Butkalyuk, I. L., Romanov, E. G., Kypriyanov, V. N., Kazakova, E. V.: Yields of activation products in 226Ra irradiation in the high-flux SM reactor. Radiochemistry 54, 383 (2012).10.1134/S1066362212040121Suche in Google Scholar
73. Engle, J. W.: The Production of Ac-225. Curr. Radiopharm. 11, 173 (2018).10.2174/1874471011666180418141357Suche in Google Scholar PubMed
74. Engle, J. W., Weidner, J. W., Ballard, B. D., Fassbender, M. E., Hudston, L. A., Jackman, K. R., Dry, D. E., Wolfsberg, L. E., Bitteker, L. J., Ullmann, J. L., Gulley, M. S., Pillai, C., Goff, G., Birnbaum, E. R., John, K. D., Mashnik, S. G., NortierJohn, F. M., Weidner, W., Ballard, B. D., Fassbender, M. E., Hudston, L. A., Jackman, K. R., Dry, D. E., Wolfsberg, L. E., Bitteker, L. J., Ullmann, J. L., Gulley, M. S., Pillai, C., Goff, G., Birnbaum, E. R., John, K. D., Mashnik, S. G., Nortier, F. M.: Ac, La, and Ce radioimpurities in 225Ac produced in 40–200 MeV proton irradiations of thorium. Radiochim. Acta 102, 569 (2014).10.1515/ract-2013-2179Suche in Google Scholar
75. Qaim, S. M.: Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 305, 233 (2015).10.1007/s10967-014-3923-2Suche in Google Scholar
76. Zielinska, B., Apostolidis, C., Bruchertseifer, F., Morgenstern, A.: An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr. Ion Exc. 25, 339 (2007).10.1080/07366290701285108Suche in Google Scholar
77. Filosofov, D. V., Rakhimov, A. V., Bozhikov, G. A., Karaivanov, D. V., Lebedev, N. A., Norseev, Y. V., Sadikov, I. I.: Isolation of radionuclides from thorium targets irradiated with 300-MeV protons. Radiochemistry 55, 410 (2013).10.1134/S1066362213040127Suche in Google Scholar
78. Mastren, T., et al.: Simultaneous separation of actinium and radium isotopes from a proton irradiated thorium matrix. Sci. Rep. 7, 8216 (2017).10.1038/s41598-017-08506-9Suche in Google Scholar
79. Radchenko, V., Mastren, T., Meyer, C. A. L., Ivanov, A. S., Bryantsev, V. S., Copping, R., Denton, D., Engle, J. W., Griswold, J. R., Murphy, K., Wilson, J. J., Owens, A., Wyant, L., Birnbaum, E. R., Fitzsimmons, J., Medvedev, D., Cutler, C. S., Mausner, L. F., Nortier, M. F., John, K. D., Mirzadeh, S., Fassbender, M. E.: Radiometric evaluation of diglycolamide resins for the chromatographic separation of actinium from fission product lanthanides. Talanta 175, 318 (2017).10.1016/j.talanta.2017.07.057Suche in Google Scholar
80. Bray, L. A., Tingey, J. M., DesChane, J. R., Egorov, O. B., Tenforde, T. S., Wilbur, D. S., Hamlin, D. K., Pathare, P. M.: Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 39, 3189 (2000).10.1021/ie990068rSuche in Google Scholar
81. Guseva, L. I., Dogadkin, N. N.: Development of a tandem generator system 229Th/225Ac/213Bi for repeated production of short-lived α-emitting radionuclides. Radiochemistry 51, 169 (2009).10.1134/S1066362209020131Suche in Google Scholar
82. Khalkin, V. A., Tsoupka-Sitnikoz, V. V., Zaitseva, N. G.: Radionuclides for radiotherapy. Actinium-225: properties, preparation, application. Radiochemistry 39, 483 (1997).Suche in Google Scholar
83. Ferrier, M. G., Stein, B. W., Bone, S. E., Cary, S. K., Ditter, A. S., Kozimor, S. A., Lezama Pacheco, J. S., Mocko, V., Seidler, G. T.: The coordination chemistry of CmIII, AmIII, and AcIII in nitrate solutions: an actinide L3-edge EXAFS study. Chem. Sci. 9, 7078 (2018).10.1039/C8SC02270DSuche in Google Scholar
84. Robertson, A. K. H., Ramogida, C. F., Schaffer, P., Radchenko, V.: Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr. Radiopharm. 11, 156 (2018).10.2174/1874471011666180416161908Suche in Google Scholar
85. McDevitt, M. R., Ma, D., Simon, J., Frank, R. K., Scheinberg, D. A.: Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isotopes 57, 841 (2002).10.1016/S0969-8043(02)00167-7Suche in Google Scholar
86. Jaggi, J. S., Kappel, B. J., McDevitt, M. R., Sgouros, G., Flombaum, C. D., Cabassa, C., Scheinberg, D. A.: Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 65, 4888 (2005).10.1158/0008-5472.CAN-04-3096Suche in Google Scholar PubMed
87. Kratochwil, C., Bruchertseifer, F., Giesel, F. L., Weis, M., Verburg, F. A., Mottaghy, F., Kopka, K., Apostolidis, C., Haberkorn, U., Morgenstern, A.: 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941 (2016).10.2967/jnumed.116.178673Suche in Google Scholar PubMed
88. Chappell, L. L., Deal, K. A., Dadachova, E., Brechbiel, M. W.: Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac radioimmunotherapy applications. Bioconj. Chem. 11, 510 (2000).10.1021/bc990153fSuche in Google Scholar PubMed
89. Thiele, N. A., et al.: An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew. Chem. Int. Edit. 56, 14712 (2017).10.1002/anie.201709532Suche in Google Scholar PubMed
90. Morgenstern, A. F., Bruchertseifer, F., Apostolidis, C.: Targeted alpha therapy with 213Bi. Curr. Radiopharm. 4, 295 (2011).10.2174/1874471011104040295Suche in Google Scholar PubMed
91. Morgenstern, A., Apostolidis, C., Kratochwil, C., Sathekge, M., Krolicki, L., Bruchertseifer, F.: An overview of targeted alpha therapy with 225actinium and 213bismuth. Curr. Radiopharm. 11, 200 (2018).10.2174/1874471011666180502104524Suche in Google Scholar PubMed PubMed Central
92. Park, S. I., Shenoi, J., Pagel, J. M., Hamlin, D. K., Wilbur, D. S., Orgun, N., Kenoyer, A. L., Frayo, S., Axtman, A., Bäck, T., Lin, Y., Fisher, D. R., Gopal, A. K., Green, D. J., Press, O. W.: Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 116, 4231 (2010).10.1182/blood-2010-05-282327Suche in Google Scholar PubMed PubMed Central
93. Wilson, J. J., Ferrier, M., Radchenko, V., Maassen, J. R., Engle, J. W., Batista, E. R., Martin, R. L., Nortier, F. M., Fassbender, M. E., John, K. D., Birnbaum, E. R.: Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes. Nucl. Med. Biol. 42, 428 (2015).10.1016/j.nucmedbio.2014.12.007Suche in Google Scholar PubMed
94. Simecek, J., Hermann, P., Seidl, C., Bruchertseifer, F., Morgenstern, A., Wester, H. J., Notni, J.: Efficient formation of inert Bi-213 chelates by tetraphosphorus acid analogues of DOTA: towards improved alpha-therapeutics. EJNMMI Res. 8, 78 (2018).10.1186/s13550-018-0431-3Suche in Google Scholar PubMed PubMed Central
95. Sathekge, M., Knoesen, O., Meckel, M., Modiselle, M., Vorster, M., Marx, S.: 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. I. 44, 1099 (2017).10.1007/s00259-017-3657-9Suche in Google Scholar PubMed PubMed Central
96. Krolicki, L., et al.: Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur. J. Nucl. Med. Mol. I. 45, 1636 (2018).10.1007/s00259-018-4015-2Suche in Google Scholar PubMed PubMed Central
97. Kratochwil, C., Bruchertseifer, F., Rathke, H., Hohenfellner, M., Giesel, F. L., Haberkorn, U., Morgenstern, A.: Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med. 59, 795 (2018).10.2967/jnumed.117.203539Suche in Google Scholar PubMed
98. Kratochwil, C., Schmidt, K., Afshar-Oromieh, A., Bruchertseifer, F., Rathke, H., Morgenstern, A., Haberkorn, U., Giesel, F. L.: Targeted alpha therapy of mCRPC: dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. I. 45, 31 (2018).10.1007/s00259-017-3817-ySuche in Google Scholar PubMed PubMed Central
99. Raja, C., Graham, P., Rizvi, S., Song, E., Goldsmith, H., Thompson, J., Bosserhoff, A., Morgenstern, A., Apostolidis, C., Kearsley, J., Reisfeld, R., Allen, B. J.: Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 6, 846 (2007).10.4161/cbt.6.6.4089Suche in Google Scholar PubMed
100. Allen, B. J., Singla, A. A., Rizvi, S. M., Graham, P., Bruchertseifer, F., Apostolidis, C., Morgenstern, A.: Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy. Immunotherapy 3, 1041 (2011).10.2217/imt.11.97Suche in Google Scholar PubMed
101. Allen, B. J., Raja, C., Rizvi, S., Li, Y., Tsui, W., Graham, P., Thompson, J., Reisfeld, R., Kearsley, J., Morgenstern, A., Apostolidis, C.: Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 4, 1318 (2005).10.4161/cbt.4.12.2251Suche in Google Scholar PubMed
102. Cordier, D., Forrer, F., Bruchertseifer, F., Morgenstern, A., Apostolidis, C., Good, S., Muller-Brand, J., Macke, H., Reubi, J. C., Merlo, A.: Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur. J. Nucl. Med. Mol. I. 37, 1335 (2010).10.1007/s00259-010-1385-5Suche in Google Scholar PubMed
103. Kratochwil, C., Giesel, F. L., Bruchertseifer, F., Mier, W., Apostolidis, C., Boll, R., Murphy, K., Haberkorn, U., Morgenstern, A.: 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. I. 41, 2106 (2014).10.1007/s00259-014-2857-9Suche in Google Scholar PubMed PubMed Central
104. Pruszynski, M., D’Huyvetter, M., Bruchertseifer, F., Morgenstern, A., Lahoutte, T.: Evaluation of an anti-HER2 nanobody labeled with 225Ac for targeted alpha-particle therapy of cancer. Mol. Pharm. 15, 1457 (2018).10.1021/acs.molpharmaceut.7b00985Suche in Google Scholar PubMed
105. McDevitt, M. R., Thorek, D. L. J., Hashimoto, T., Gondo, T., Veach, D. R., Sharma, S. K., Kalidindi, T. M., Abou, D. S., Watson, P. A., Beattie, B. J., Timmermand, O. V., Strand, S. E., Lewis, J. S., Scardino, P. T., Scher, H. I., Lilja, H., Larson, S. M., Ulmert, D.: Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat. Commun. 9, 1629 (2018).10.1038/s41467-018-04107-wSuche in Google Scholar PubMed PubMed Central
106. Majkowska-Pilip, A., Rius, M., Bruchertseifer, F., Apostolidis, C., Weis, M., Bonelli, M., Laurenza, M., Krolicki, L., Morgenstern, A.: In vitro evaluation of 225Ac-DOTA-substance P for targeted alpha therapy of glioblastoma multiforme. Chem. Biol. Drug Des. 92, 1344 (2018).10.1111/cbdd.13199Suche in Google Scholar PubMed
107. Jurcic, J. G.: Clinical studies with bismuth-213 and actinium-225 for hematologic malignancies. Curr. Radiopharm. 11, 192 (2018).10.2174/1874471011666180525102814Suche in Google Scholar PubMed
108. Henriksen, G., Hoff, P., Alstad, J., Larsen, R. H.: 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim. Acta 89, 661 (2001).10.1524/ract.2001.89.10.661Suche in Google Scholar
109. Soderquist, C. Z., McNamara, B. K., Fisher, D. R.: Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr. Radiopharm. 5, 244 (2012).10.2174/1874471011205030244Suche in Google Scholar PubMed
110. Zhuikov, B. L., Kalmykov, S. N., Ermolaev, S. V., Aliev, R. A., Kokhanyuk, V. M., Matushko, V. L., Tananaev, I. G., Myasoedov, B. F.: Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry 53, 73 (2011).10.1134/S1066362211010103Suche in Google Scholar
111. Weidner, J. W., Mashnik, S. G., John, K. D., Hemez, F., Ballard, B., Bach, H., Birnbaum, E. R., Bitteker, L. J., Couture, A., Dry, D., Fassbender, M. E., Gulley, M. S., Jackman, K. R., Ullmann, J. L., Wolfsberg, L. E., Nortier, F. M.: Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isotopes 70, 2602 (2012).10.1016/j.apradiso.2012.07.006Suche in Google Scholar PubMed
112. Ivanov, P. I., Collins, S. M., van Es, E. M., Garcia-Miranda, M., Jerome, S. M., Russell, B. C.: Evaluation of the separation and purification of 227Th from its decay progeny by anion exchange and extraction chromatography. Appl. Radiat. Isotopes 124, 100 (2017).10.1016/j.apradiso.2017.03.020Suche in Google Scholar PubMed
113. Vasiliev, A. N., Ostapenko, V. S., Lapshina, E. V., Ermolaev, S. V., Danilov, S. S., Zhuikov, B. L., Kalmykov, S. N.: Recovery of Ra-223 from natural thorium irradiated by protons. Radiochim. Acta 104, 539 (2016).10.1515/ract-2015-2549Suche in Google Scholar
114. Guseva, L. I., Tikhomirova, G. S., Dogadkin, N. N.: Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry 46, 58 (2004).10.1023/B:RACH.0000024637.39523.e4Suche in Google Scholar
115. Larsen, R. H., Borrebaek, J., Dahle, J., Melhus, K. B., Krogh, C., Valan, M. H., Bruland, O. S.: Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother. Radiopharm. 22, 431 (2007).10.1089/cbr.2006.321Suche in Google Scholar PubMed
116. Heyerdahl, H., Abbas, N., Brevik, E. M., Mollatt, C., Dahle, J.: Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab. PLoS One 7, e42345 (2012).10.1371/journal.pone.0042345Suche in Google Scholar PubMed PubMed Central
117. Frenvik, J. O., Dyrstad, K., Kristensen, S., Ryan, O. B.: Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: purification of targeted thorium conjugates on cation exchange columns. Drug Dev Ind Pharm 43, 1440 (2017).10.1080/03639045.2017.1318906Suche in Google Scholar PubMed
118. Ramdahl, T., Bonge-Hansen, H. T., Ryan, O. B., Larsen, S., Herstad, G., Sandberg, M., Bjerke, R. M., Grant, D., Brevik, E. M., Cuthbertson, A. S.: An efficient chelator for complexation of thorium-227. Bioorg. Med. Chem. Lett. 26, 4318 (2016).10.1016/j.bmcl.2016.07.034Suche in Google Scholar PubMed
119. Hagemann, U. B., Mihaylova, D., Uran, S. R., Borrebaek, J., Grant, D., Bjerke, R. M., Karlsson, J., Cuthbertson, A. S.: Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. Oncotarget 8, 56311 (2017).10.18632/oncotarget.16910Suche in Google Scholar PubMed PubMed Central
120. Captain, I., Deblonde, G. J., Rupert, P. B., An, D. D., Illy, M. C., Rostan, E., Ralston, C. Y., Strong, R. K., Abergel, R. J.: Engineered recognition of tetravalent zirconium and thorium by chelator-protein systems: toward flexible radiotherapy and imaging platforms. Inorg. Chem. 55, 11930 (2016).10.1021/acs.inorgchem.6b02041Suche in Google Scholar PubMed
121. Gott, M., Steinbach, J., Mamat, C.: The radiochemical and radiopharmaceutical applications of radium. Open Chem. 14, 118 (2016).10.1515/chem-2016-0011Suche in Google Scholar
122. Henriksen, G., Schoultz, B. W., Michaelsen, T. E., Bruland, O. S., Larsen, R. H.: Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl. Med. Biol. 31, 441 (2004).10.1016/j.nucmedbio.2003.11.004Suche in Google Scholar PubMed
123. Dahle, J., Borrebaek, J., Jonasdottir, T. J., Hjelmerud, A. K., Melhus, K. B., Bruland, O. S., Press, O. W., Larsen, R. H.: Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood 110, 2049 (2007).10.1182/blood-2007-01-066803Suche in Google Scholar PubMed
124. Hagemann, U. B., Wickstroem, K., Wang, E., Shea, A. O., Sponheim, K., Karlsson, J., Bjerke, R. M., Ryan, O. B., Cuthbertson, A. S.: In vitro and in vivo efficacy of a novel CD33-targeted thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol. Cancer Ther. 15, 2422 (2016).10.1158/1535-7163.MCT-16-0251Suche in Google Scholar PubMed
125. Nilsson, S.: Radionuclide therapies in prostate cancer: integrating radium-223 in the treatment of patients with metastatic castration-resistant prostate cancer. Curr. Oncol. Rep. 18, 14 (2016).10.1007/s11912-015-0495-4Suche in Google Scholar PubMed PubMed Central
126. Bruland, O. S., Jonasdottir, T. J., Fisher, D. R., Larsen, R. H.: Radium-223: from radiochemical development to clinical applications in targeted cancer therapy. Curr. Radiopharm. 1, 203 (2008).10.2174/1874471010801030203Suche in Google Scholar
127. Liepe, K., Shinto, A.: From palliative therapy to prolongation of survival: 223RaCl2 in the treatment of bone metastases. Ther. Adv. Med. Oncol. 8, 294 (2016).10.1177/1758834016640494Suche in Google Scholar PubMed PubMed Central
128. Kluetz, P. G., Pierce, W., Maher, V. E., Zhang, H., Tang, S., Song, P., Liu, Q., Haber, M. T., Leutzinger, E. E., Al-Hakim, A., Chen, W., Palmby, T., Alebachew, E., Sridhara, R., Ibrahim, A., Justice, R., Pazdur, R.: Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 20, 9 (2014).10.1158/1078-0432.CCR-13-2665Suche in Google Scholar PubMed
129. Florimonte, L., Dellavedova, L., Maffioli, L. S.: Radium-223 dichloride in clinical practice: a review. Eur. J. Nucl. Med. Mol. I. 43, 1896 (2016).10.1007/s00259-016-3386-5Suche in Google Scholar
130. Parker, C., Heidenreich, A., Nilsson, S., Shore, N.: Current approaches to incorporation of radium-223 in clinical practice. Prostate Cancer Prostatic Dis. 21, 37 (2018).10.1038/s41391-017-0020-ySuche in Google Scholar
131. Saad, F., et al.: Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol. 17, 1306 (2016).10.1016/S1470-2045(16)30173-5Suche in Google Scholar
132. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, M. F., Birnbaum, E. R., John, K. D., Fassbender, M. E.: Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim. Acta 104, 291 (2016).10.1515/ract-2015-2486Suche in Google Scholar
133. Morgenstern, A., Lebeda, O., Stursa, J., Bruchertseifer, F., Capote, R., McGinley, J., Rasmussen, G., Sin, M., Zielinska, B., Apostolidis, C.: Production of U-230/Th-226 for targeted alpha therapy via proton irradiation of Pa-231. Anal. Chem. 80, 8763 (2008).10.1021/ac801304cSuche in Google Scholar PubMed
134. Morgenstern, A., Apostolidis, C., Bruchertseifer, F., Capote, R., Gouder, T., Simonelli, F., Sin, M., Abbas, K.: Cross-sections of the reaction Th-232(p,3n)Pa-230 for reaction of U-230 production for targeted alpha therapy. Appl. Radiat. Isotopes 66, 1275 (2008).10.1016/j.apradiso.2008.02.066Suche in Google Scholar PubMed
135. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Metivier, V.: 232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nucl. Med. Biol. 41(Suppl), e19 (2014).10.1016/j.nucmedbio.2013.12.011Suche in Google Scholar PubMed
136. Dybczynski, R. S., Pyszynska, M., Chajduk, E.: A novel method for the separation of uranium, protactinium and thorium by cation exchange chromatography. In: J. Michalik, W. Smulek, E. Godlewska-Para, (Eds.), Warsaw, (2010), p. 70.Suche in Google Scholar
137. Mastren, T., Stein, B. W., Parker, T. G., Radchenko, V., Copping, R., Owens, A., Wyant, L. E., Brugh, M., Kozimor, S. A., Nortier, F. M., Birnbaum, E. R., John, K. D., Fassbender, M. E.: Separation of protactinium employing sulfur-based extraction chromatographic resins. Anal. Chem. 90, 7012 (2018).10.1021/acs.analchem.8b01380Suche in Google Scholar PubMed
138. Müller, C., Domnanich, K. A., Umbricht, C. A., Van der Meulen, N. P.: Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Brit. J. Radiol. 91, 20180074 (2018).10.1259/bjr.20180074Suche in Google Scholar PubMed PubMed Central
139. Allen, B. J.: Targeted alpha therapy: evidence for potential efficacy of alpha-immunoconjugates in the management of micrometastatic cancer. Australas. Radiol. 43, 480 (1999).10.1046/j.1440-1673.1999.00717.xSuche in Google Scholar PubMed
140. Beyer, G. J., Comor, J. J., Dakovic, M., Soloviev, D., Tamburella, C., Hagebø, E., Allan, B., Dmitriev, S. N., Zaitseva, N. G.: Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta 90, 247 (2002).10.1524/ract.2002.90.5_2002.247Suche in Google Scholar
141. Zaitseva, N. G., Dmitriev, S. N., Maslov, O. D., Molokanova, L. G., Starodub, G. Y., Shishkin, S. V., Shishkina, T. V., Beyer, G. J.: Terbium-149 for nuclear medicine. The production of 149Tb via heavy ions induced nuclear reactions Czech. J. Phys. 53, A455 (2003).10.1007/s10582-003-0058-zSuche in Google Scholar
142. Beyer, G. J., Miederer, M., Vranjes-Duric, S., Comor, J. J., Künzi, G., Hartley, O., Senekowitsch-Schmidtke, R., Soloviev, D., Buchegger, F.: Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. I. 31, 547 (2004).10.1007/s00259-003-1413-9Suche in Google Scholar
143. Müller, C., Zhernosekov, K., Koster, U., Johnston, K., Dorrer, H., Hohn, A., van der Walt, N. T., Turler, A., Schibli, R.: A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 53, 1951 (2012).10.2967/jnumed.112.107540Suche in Google Scholar
144. Kulyukhin, S. A., Auerman, L. N., Novichenko, V. L., Mikheev, N. B., Rumer, I. A., Kamenskaya, A. N., Goncharov, L. A., Smirnov, A. I.: Production of microgram quantities of einsteinium-253 by the reactor irradiation of californium. Inorg. Chim. Acta 110, 25 (1985).10.1016/S0020-1693(00)81347-XSuche in Google Scholar
145. Baybarz, R. D.: Dissociation constants of the transplutonium element chelates of diethylenepentaacetic acid (DTPA) and the application of DTPA chelates to solvent extraction separations of transplutonium elements from the lanthanide elements. J. Inorg. Nucl. Chem. 27, 1831 (1965).10.1016/0022-1902(65)80327-XSuche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications