Startseite Naturwissenschaften Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of sulfate on sorption of Eu(III) by Na-montmorillonite

  • Madhuri A. Patel , Aishwarya Soumitra Kar EMAIL logo , Sumit Kumar , Mrinal Kanti Das , Vaibhavi V. Raut und Bhupendra S. Tomar
Veröffentlicht/Copyright: 29. September 2018

Abstract

Smectite-rich natural clay is being evaluated as the backfill and buffer material in the Indian repository program for the nuclear high level waste disposal. In the natural clay, montmorillonite is one of the major mineral component governing the sorption behavior of various radionuclides. In the present work, influence of sulfate anion on sorption of Eu(III) by Na-montmorillonite has been investigated. The effect of pH and sulfate concentration on Eu(III) sorption by Na-montmorillonite was used to understand the mechanism of sorption process. The Eu(III) sorption by clay at varying pH was virtually pH independent at lower pH (<4), with ion exchange as the dominant mode for Eu(III) sorption. In the pH region of 4–6.5, sharp increase in sorption indicates surface complexation as predominant mechanism. At pH>6.5, the sorption attained a constant value. To deduce the mechanism of sorption of Eu(III) on Na-montmorillonite surface in presence of sulfate, ATR-FTIR spectroscopic investigations has been carried out which indicate the presence of sulfate bearing species on Na-montmorillonite surface. Using spectroscopic findings as a guide, the surface complexation modeling, in absence and presence of sulfate, was successfully carried out.

Acknowledgements

The authors would like to acknowledge Dr. N.L Misra for carrying out the elemental analysis of Na-montmorillonite clay by TXRF. Acknowledgements are due to Shri. B. N. Rath and Dr. Shankar Koiry in recording SEM and IR respectively which helped authors in thorough characterization of clay.

References

1. Schwyn, B., Wersin, P., Ruedi, J., Schneider, J., Altmann S., Missana, T., Noseck, U.: FUNMIG integrated project results and conclusions from a safety case perspective. Appl. Geochem. 27, 501 (2012).10.1016/j.apgeochem.2011.09.018Suche in Google Scholar

2. Missana, T., Alonso, U., Garcia-Gutierrez, M., Mingarro, M.: Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl. Geochem. 23, 1484 (2008).10.1016/j.apgeochem.2008.01.008Suche in Google Scholar

3. Lutzenkirchen, J.: Summary of studies on (ad)sorption as a ‘‘well-established’’ process within FUNMIG activities. Appl. Geochem. 27, 427 (2012).10.1016/j.apgeochem.2011.09.012Suche in Google Scholar

4. Bradbury, M. H., Baeyens, B.: Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV),Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 69, 875 (2005).10.1016/j.gca.2004.07.020Suche in Google Scholar

5. Rabung, Th., Pierret, M. C., Bauer, A., Geckeis, H., Bradbury, M. H., Baeyens, B.: Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 69, 5393 (2005).10.1016/j.gca.2005.06.030Suche in Google Scholar

6. Alliot, C., Bion, L., Mercier, F., Toulhoat, P.: Effect of aqueous acetic, oxalic, and carbonic acids on the adsorption of europium(III) onto α-alumina. J. Colloid Interface Sci. 298, 573 (2006).10.1016/j.jcis.2006.01.004Suche in Google Scholar PubMed

7. Fouchard, A. K., Drot, R., Simoni, E., Marmier, N., Fromage, F., Ehrhard, J. J.: Structural identification of europium(III) adsorption Complexes on Montmorillonite. New. J. Chem. 28, 864 (2004).10.1039/b400306cSuche in Google Scholar

8. Wang, X., Sun, Y., Alsaedi, A., Hayat, T., Wang, X.: Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch,TRLFS and kinetic desorption techniques. Chem. Eng. J. 264, 570 (2015).10.1016/j.cej.2014.11.136Suche in Google Scholar

9. Farrah, H., Pickering, W. F.: Influence of clay-solute interactions on aqueous heavy metal ion levels. Water Air Soil Pollut. 8, 189 (1977).10.1007/BF00294042Suche in Google Scholar

10. Adebowale, K. O., Unuabonah, I. E., Olu-Owolabi, B. I.: Adsorption of some heavy metal ions on sulfate- and phosphate-modified kaolin. Appl. Clay Sci. 29, 145 (2005).10.1016/j.clay.2004.10.003Suche in Google Scholar

11. Zhu, J., Cozzolino, V., Fernandez, M., Sánchez, R. M. T., Pigna, M., Huang, Q., Violante, A.: Sorption of Cu on a Fe-deformed montmorillonite complex: Effect of pH, ionicstrength, competitor heavy metal, and inorganic and organic ligands. Appl. Clay Sci. 52, 339 (2011).10.1016/j.clay.2011.03.012Suche in Google Scholar

12. Bolan, N. S., Naidu, R., Khan, M. A. R., Tillman, R. W., Syers, J. K.: The effects of anion sorption on sorption and leaching of cadmium. Aust. J. Soil Res. 37, 445 (1999).10.1071/S97046Suche in Google Scholar

13. Garcia-Miragaya, J., Page, A. L.: Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of cd by montmorillonite. Soil Sci. Soc. Am. J. 40, 658 (1976).10.2136/sssaj1976.03615995004000050019xSuche in Google Scholar

14. Gupta, S. S., Bhattacharyya, K. G.: Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phys. Chem. Chem. Phys. 14, 6698 (2012).10.1039/c2cp40093fSuche in Google Scholar PubMed

15. Kurniawan, A., Ismadji, S., Soetaredjo, F. E., Ayucitra, A.: Natural clays/clay minerals and modified forms for heavy metals removal. In: Sharma, S. K. (Ed.), Heavy metals in water: presence, removal and safety.Suche in Google Scholar

16. Olu-Owolabi, B. I., Unuabonah, E. I.: Kinetics and thermodynamics of the removal of Zn2+ and Cu2+ from aqueous solution by sulphate and phosphate modified bentonite clay. J. Hazad. Mat. 184, 731 (2010).10.1016/j.jhazmat.2010.08.100Suche in Google Scholar PubMed

17. Bachmaf, S., Planer-Friedrich, B., Merkel, B. J.: Effect of sulphate, carbonate, and phosphate on the uranium(VI) sorption behaviour onto bentonite. Radiochim. Acta. 96, 359 (2008).10.1524/ract.2008.1496Suche in Google Scholar

18. Troyera, L. D., Maillot, F., Wang, Z., Wang, Z., Mehta, V. S., Giammar, D. E., Catalano, J. G.: Effect of phosphate on U (VI) sorption to montmorillonite: Ternary complexation and precipitation barrier. Geochim. Cosmochim. Acta 175, 86 (2016).10.1016/j.gca.2015.11.029Suche in Google Scholar

19. Fernandes, M. M., Baeyens, B., Dähn R., Scheinost, A. C., Bradbury, M. H.: U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim. Cosmochim. Acta. 93, 262 (2012).10.1016/j.gca.2012.04.017Suche in Google Scholar

20. Fernandes, M. M., Baeyens, B., Bradbury, M. H.: The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite. Radiochim. Acta 96, 691 (2008).10.1524/ract.2008.1555Suche in Google Scholar

21. Fernandes, M. M., Scheinost, A. C., Baeyens, B.: Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites. Water Res. 99, 74 (2016).10.1016/j.watres.2016.04.046Suche in Google Scholar PubMed

22. Chen, Z., Jin, Q., Guo, Z., Montavon, G., Wu, W.: Surface complexation modeling of Eu(III) and phosphate on Na-bentonite: binary and ternary adsorption systems. Chem. Eng. J. 256, 61 (2014).10.1016/j.cej.2014.06.096Suche in Google Scholar

23. Patel, M. A., Kar, A. S., Kumar, S., Tomar, B. S.: Effect of phosphate on sorption of Eu(III) by montmorillonite. J. Radioanal. Nucl. Chem. 313, (2017) 537.10.1007/s10967-017-5304-0Suche in Google Scholar

24. Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., Johnson, B.: Sulfate reduction in groundwater: characterization and applications for remediation. Environ. Geochem. Health 34, 539 (2012).10.1007/s10653-011-9423-1Suche in Google Scholar PubMed PubMed Central

25. Liu, X., Simunek, J., Li, L., He, J.: Identification of sulfate sources in groundwater using isotope analysis and modeling of flood irrigation with waters of different quality in the Jinghuiqu district of China. Environ. Earth Sci. 69, 1589 (2013).10.1007/s12665-012-1993-4Suche in Google Scholar

26. Samborska, K., Halas, S., Bottrell, S. H.: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland. J. Hydrol. 486, 136 (2013).10.1016/j.jhydrol.2013.01.017Suche in Google Scholar

27. Kefeni, K. K., Msagati, T. M., Mareee, J. P., Mamba, B. B.: Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Min. Eng. 81, 79 (2015).10.1016/j.mineng.2015.07.016Suche in Google Scholar

28. Ding, M., Kelkar, S., Meijer, A.: Surface complexation modeling of americium sorption onto volcanic tuff. J. Env. Radioactiv. 136, 181 (2014).10.1016/j.jenvrad.2014.06.007Suche in Google Scholar PubMed

29. Kumar, S., Pente, A. S., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Americium sorption on smectite-rich natural clay from granitic groundwater. Appl. Geochem. 35, 28 (2013).10.1016/j.apgeochem.2013.05.016Suche in Google Scholar

30. Baeyens, B., Bradbury, M. H.: Cation exchange capacity measurements on illite using the sodium and cesium isotope dilution technique: effects of the index cation, electrolyte concentration and competition: modeling. Clays Clay Miner. 52, 421 (2004).10.1346/CCMN.2004.0520403Suche in Google Scholar

31. Vinoda, B. M., Manjanna, J.: Dissolution of iron in salicylic acid and cation exchange between Fe(II)-salicylate and Na-montmorillonite to form Fe(II)-montmorillonite. Appl. Clay. Sci. 97–98, 78 (2014).10.1016/j.clay.2014.05.005Suche in Google Scholar

32. Bradbury, M. H., Baeyens, B.: Sorption of Eu on Na- and Ca-montmorillonite: Experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325 (2002).10.1016/S0016-7037(02)00841-4Suche in Google Scholar

33. Herbelin, A. L., Westall, J. C.: FITEQL, a computer program for determination of chemical equilibrium constant from experimental data. (1999), Department of Chemistry, Oregon State University, Oregon 97331, USA.Suche in Google Scholar

34. Bradbury, M. H., Baeyens, B.: Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim. Acta 94, 619 (2006).10.1524/ract.2006.94.9-11.619Suche in Google Scholar

35. Harun, F. W., Almadani, E. A., Radzi, S. M.: Metal cation exchanged montmorillonite K10 (MMT K10): surface properties and catalytic activity. J. Sci. Res. Dev. 3, 90 (2016).Suche in Google Scholar

36. Wang, F.-F., Liu, J., Li, H., Liu, C.-L., Yang, R.-Z., Dong, W.-S.: Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chem. 17, 2455 (2015).10.1039/C4GC02131BSuche in Google Scholar

37. Kanda, L. R. S., Corazza, M. L., Zatta, L., Wypych, F.: Kinetics evaluation of the ethyl esterification of long chain fatty acids using commercial montmorillonite K10 as catalyst. Fuel 193, 265 (2017).10.1016/j.fuel.2016.12.055Suche in Google Scholar

38. Handbook for clay minerals and othernon-metallic minerals. In: Van Olphena, H., Fripiat, J. J. (Eds.), publishedby Pergamon Press Aurora, USA.Suche in Google Scholar

39. Xi, Y., Frost, R. L., He, H.: Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl and trialkyl methyl ammonium bromides. J. Colloid Interface Sci. 305, 150 (2007).10.1016/j.jcis.2006.09.033Suche in Google Scholar PubMed

40. Manjanna, J., Kozaki, T., Sato, S.: Fe(III)-montmorillonite: Basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl. Clay Sci. 43, 208 (2009).10.1016/j.clay.2008.09.007Suche in Google Scholar

41. Glaus, M. A., Frick, S., Rosse, R., Loon, L. R. V.: Comparative study of tracer diffusion of HTO, 22Na+ and 36Cl in compacted kaolinite, illite and montmorillonite. Geochim. Cosmochim. Acta 74, 1999 (2010).10.1016/j.gca.2010.01.010Suche in Google Scholar

42. Lainé, M., Balan, E., Allard, T., Paineau, E., Jeunesse, P., Mostafavi, M., Robert, J.-L.: Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay. RSC Adv. 7, 526 (2017).10.1039/C6RA24861FSuche in Google Scholar

43. Bukka, K., Miller, J. D.: FTIR study of deuterated montmorillonites: structural features relevant to pillared clay stability. Clays Clay Miner. 40, 92 (1992).10.1346/CCMN.1992.0400110Suche in Google Scholar

44. Tyagi, B., Chudasama, C. D., Jasra, R. V.: Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta A 64, 273 (2006).10.1016/j.saa.2005.07.018Suche in Google Scholar PubMed

45. Adikary, S. U., Ashokcline, M., Nirojan, K.: Characterization of montmorillonite clay from naturally occurring clay deposits in murunkan area. Proceedings of 8th International Research Conference, KDU, 163 (2015).Suche in Google Scholar

46. Lerot, L., Low, P. F.: Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays Clay Miner. 24, 191 (1976).10.1346/CCMN.1976.0240407Suche in Google Scholar

47. Baeyens, B., Bradbury, M. H.: A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part I: physico-chemical characterization and titration measurements. PSI Bericht Nr. 95-10, Nagra NTB 95-04 (1995), Paul Scherrer Institut, Villigen PSI, Switzerland.Suche in Google Scholar

48. Sigma Aldrich Raman FTIR n.d.<http://www.sigmaaldrich.com/catalog/product/aldrich/281522? lang=pt&region=BR> [accessed May 19, 2015].Suche in Google Scholar

49. Stumm, W.: Chemistry of the solid water interface (1992), A Wiley-Interscience Publication, Canada.Suche in Google Scholar

50. Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: NAGRA/PSI chemical thermodynamic database/0.1/0.1. (2002), Wettingen/Switzerland.Suche in Google Scholar

51. Guo, Z., Xu, J., Shi, K., Tang, Y., Wu, W., Tao, Z.: Eu(III) adsorption/desorption on Na-bentonite: Experimental and modeling studies. Colloids Surf. A: Physicochem. Eng. Aspects. 339, 126 (2009).10.1016/j.colsurfa.2009.02.007Suche in Google Scholar

52. Dawodu, A. F., Akpomie, K. G.: Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J. Mater. Res. Technol. 3, 129 (2014).10.1016/j.jmrt.2014.03.002Suche in Google Scholar

53. Bradbury, M. H., Baeyens, B.: Sorption modelling on illite Part II: actinide sorptionand linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).10.1016/j.gca.2008.11.016Suche in Google Scholar

54. Dzombak, D. A., Morel, F. M.: Surface complexation modeling: hydrous ferric hydroxide (1990), Wiley-Interscience, New York.Suche in Google Scholar

55. Rabung, Th., Stumpf, Th., Geckeis, H., Klenze, R., Kim, J. I.: Sorption of Am(III) and Eu(III) onto γ-alumina: experiment and modeling. Radiochim. Acta 88, 711 (2000).10.1524/ract.2000.88.9-11.711Suche in Google Scholar

56. Sasakia, T., Uedaa, K., Saitob, T., Aoyagic, N., Kobayashia, T., Takagia, I., Kimurac, T., Tachid, Y.: Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling. J. Nucl. Sci. Technol. 53, 592 (2016).10.1080/00223131.2015.1066719Suche in Google Scholar

57. Silva, R. J., Nitsche, H.: Actinide environmental chemistry. Radiochim. Acta 70/71, 337 (1995).10.1524/ract.1995.7071.s1.377Suche in Google Scholar

Received: 2018-04-02
Accepted: 2018-08-29
Published Online: 2018-09-29
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2964/pdf
Button zum nach oben scrollen