Startseite Naturwissenschaften An overview of quinoxaline synthesis by green methods: recent reports
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An overview of quinoxaline synthesis by green methods: recent reports

  • Venkata Durga Nageswar Yadavalli EMAIL logo und Ramesh Katla
Veröffentlicht/Copyright: 8. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Quinoxalines and their derivatives belong to an important class of bicyclic aromatic heterocyclic system, also known as benzopyrazines, containing a benzene ring and a pyrazine ring. They have attracted considerable attention over the years due to their potential biological and pharmaceutical properties. A wide range of synthetic strategies is reported in this significant area of research. The present review showcases recent research advances in the synthesis of quinoxaline derivatives following environmentally benign approaches.


Corresponding author: Venkata Durga Nageswar Yadavalli, Indian Institute of Chemical Technology-IICT, Tarnaka, Hyderabad, India, E-mail:

Acknowledgments

Ramesh Katla (Foreign Visiting Professor-Edital N.03/2020) thanks to the PROPESP/FURG, Rio Grande-RS for Visiting Professorship.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lindstrom, UM. Stereoselective organic reactions in water. Chem Rev 2002;102:2751–72. https://doi.org/10.1021/cr010122p.Suche in Google Scholar PubMed

2. Lipshutz, BH, Aguinaldo, GT, Ghorai, S, Voigtritter, K. Olefin cross-metathesis reactions at room temperature using the nonionic amphiphile “PTS”: just add water. Org Lett 2008;10:1325–8. https://doi.org/10.1021/ol800028x.Suche in Google Scholar PubMed

3. Lipshutz, BH, Chung, DW, Rich, B. Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org Lett 2008;10:3793–6. https://doi.org/10.1021/ol801471f.Suche in Google Scholar PubMed

4. Lipshutz, BH, Ghorai, S, Aguinaldo, GT. Ring-closing metathesis at room temperature within nanometer micelles using water as the only solvent. Adv Synth Catal 2008;350:953–6. https://doi.org/10.1002/adsc.200800114.Suche in Google Scholar

5. Lipshutz, BH, Taft, BR. Heck couplings at room temperature in nanometer aqueous micelles. Org Lett 2008;10:1329–32. https://doi.org/10.1021/ol702755g.Suche in Google Scholar PubMed

6. Lipshutz, BH, Abela, AR. Micellar catalysis of Suzuki-Miyaura cross-couplings with heteroaromatics in water. Org Lett 2008;10:5329–32. https://doi.org/10.1021/ol801712e.Suche in Google Scholar PubMed

7. Pereira, JA, Pessoa, Am, Cordeiro, MNDS, Fernandes, R, Prudêncio, C, Noronha, JP, Vieira, M. Quinoxaline, its derivatives and applications: a state of the art review. Eur J Med Chem. 2015; 97:664–72. https://doi.org/10.1016/j.ejmech.2014.06.058.Suche in Google Scholar PubMed

8. Dailey, S, Feast, JW, Peace, RJ, Sage, IC, Till, S, Wood, EL. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J Mater Chem 2001;11:2238–43. https://doi.org/10.1039/b104674h.Suche in Google Scholar

9. Lee, J, Murray, WV, Rivero, RA. Solid phase synthesis of 3,4-disubstituted-7-carbamoyl-1,2,3,4-tetrahydroquinoxalin-2-ones. J Org Chem 1997;62:3874–9. https://doi.org/10.1021/jo962412p.Suche in Google Scholar

10. Zaragoza, F, Stephensen, H. Solid-phase synthesis of substituted 4-acyl-1,2,3,4-tetrahydroquinoxalin-2-ones. J Org Chem 1999;64:2555–7. https://doi.org/10.1021/jo982070i.Suche in Google Scholar

11. Crossley, JM, Johnson, LA. Laterally-extended porphyrin systems incorporating a switchable unit. Chem Commun 2002;10:1122–3. https://doi.org/10.1039/b111655j.Suche in Google Scholar PubMed

12. Mizuno, T, Wei, WH, Eller, LR, Sessler, JL. Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. J Am Chem Soc 2002;124:1134–5. https://doi.org/10.1021/ja017298t.Suche in Google Scholar PubMed

13. Elwahy, AHM. Synthesis of new benzo-substituted macrocyclic ligands containing quinoxaline subunits. Tetrahedron 2000;56:897–907. https://doi.org/10.1016/s0040-4020(99)01072-8.Suche in Google Scholar

14. Brien, DO, Weaver, MS, Lidzey, DG, Bradley, DDC. Use of poly(phenyl quinoxaline) as an electron transport material in polymer light-emitting diodes. Appl Phys Lett 1996;69:881–3. https://doi.org/10.1063/1.117975.Suche in Google Scholar

15. Brock, ED, Lewis, DM, Yousaf, TI, Harper, HH. (The Procter & Gamble Company, USA) WO 9951688 (1999). Chem Abstr 2000;131:287743.Suche in Google Scholar

16. Sascha, O, Rudiger, F. Quinoxalinodehydroannulenes: a novel class of carbon-rich materials. Synlett 2004;9:1509–12.10.1055/s-2004-829098Suche in Google Scholar

17. Jonathan, LS, Hiromitsu, M, Toshihisa, M, Vincent, ML, Hiroyuki, F. Quinoxaline-bridged porphyrinoids. J Am Chem Soc 2002;124:13474–9.10.1021/ja0273750Suche in Google Scholar PubMed

18. Peter, PC, Gang, Z, Grace, AM, Carlos, H, Linda, MGT. Quinoxaline excision: a novel approach to tri- and diquinoxaline cavitands. Org Lett 2004;6:333–6.10.1021/ol036045xSuche in Google Scholar PubMed

19. Bhosale, RS, Sarda, SR, Andhapure, SS, Jadhav, WN, Bhusare, SR, Pawar, RP. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. Tetrahedron Lett 2005;46:7183–6. https://doi.org/10.1016/j.tetlet.2005.08.080.Suche in Google Scholar

20. More, SV, Sastry, MNV, Wang, C, Yao, CF. Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines. Tetrahedron Lett 2005;46:6345–8. https://doi.org/10.1016/j.tetlet.2005.07.026.Suche in Google Scholar

21. Aparicio, D, Attanasi, OA, Filippone, P, Ignacio, R, Lillini, S, Mantellini, F, et al.. Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. J Org Chem 2006;71:5897–905. https://doi.org/10.1021/jo060450v.Suche in Google Scholar PubMed

22. Das, B, Venkateswarlu, K, Suneel, K, Majhi, A. An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst. Tetrahedron Lett 2007;48:5371–4. https://doi.org/10.1016/j.tetlet.2007.06.036.Suche in Google Scholar

23. Raw, SA, Wilfred, CD, Taylor, RJK. Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. Org Biomol Chem 2004;2:788–96. https://doi.org/10.1039/b315689c.Suche in Google Scholar PubMed

24. Antoniotti, S, Dunach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines. Tetrahedron Lett 2002;43:3971–3. https://doi.org/10.1016/s0040-4039(02)00715-3.Suche in Google Scholar

25. Kumar, D, Seth, K, Kommi, DN, Bhagat, Chakraborti, AK. Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis. RSC Adv 2013;3:15157–68. https://doi.org/10.1039/c3ra41038b.Suche in Google Scholar

26. Chakrabarti, K, Maji, M, Kundu, S. Cooperative iridium complex catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem 2019;21:1999–2004. https://doi.org/10.1039/c8gc03744b.Suche in Google Scholar

27. Bardajee, GR, Mizani, F, Rostami, I, Mohamadi, A. FeCl3Mediated simple, green, and efficient method for the one-pot synthesis of pyrazine-based polycyclic aromatic compounds under mild conditions. Polycycl Aromat Comp 2013;33:419–29. https://doi.org/10.1080/10406638.2013.791995.Suche in Google Scholar

28. Anil Kumar, BSP, Madhav, B, Reddy, KHV, Nageswar, YVD. Quinoxaline synthesis in the novel tandem one-pot protocol. Tetrahedron Lett 2011;52:2862–5. https://doi.org/10.1016/j.tetlet.2011.03.110.Suche in Google Scholar

29. Delpivo, C, Micheletti, G, Boga, C. A green synthesis of quinoxalines and 2,3-dihydropyrazines. Synthesis 2013;45:1546–52.10.1055/s-0033-1338441Suche in Google Scholar

30. Kamal, A, Korrapati, SB, Shaikh, F, Ali Hussaini, SM, Shaik, AB. L-Proline mediated synthesis of quinoxalines; evaluation of cytotoxic and antimicrobial activity. RSC Adv 2014;4:46369–77. https://doi.org/10.1039/c4ra08615e.Suche in Google Scholar

31. Hossein, G. Fast and green synthesis of biologically important quinoxalines with high yields in water. Curr Chem Lett 2014;3:183–8.10.5267/j.ccl.2014.3.002Suche in Google Scholar

32. Naushad, E, Yong, RL. Cerium oxide nanoparticle-catalyzed three-component protocol for the synthesis of highly substituted novel quinoxalin-2-amine derivatives and 3,4-dihydroquinoxalin-2-amines in water. RSC Adv 2014;4:11459–68.10.1039/c4ra00717dSuche in Google Scholar

33. Bhattacharya, T, Sarma, TK, Samanta, S. Self-assembled monolayer coated gold-nanoparticle catalyzed aerobic oxidation of α-hydroxy ketones in water: an efficient one-pot synthesis of quinoxaline derivatives. Catal Sci Technol 2012;2:2216–20. https://doi.org/10.1039/c2cy20438j.Suche in Google Scholar

34. Mulik, A, Chandam, D, Patil, P, Patil, D, Jagdale, Deshmukh, M. Proficient synthesis of quinoxaline and phthalazinetrione derivatives using [C8dabco]Br ionic liquid as catalyst in aqueous media. J Mol Liq 2013;179:104–9. https://doi.org/10.1016/j.molliq.2012.12.006.Suche in Google Scholar

35. Kumar, K, Mudshinge, SR, Goyal, S, Gangar, M, Nair, VA. A catalyst-free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclization of 1,2-diamines and phenacyl bromides. Tetrahedron Lett 2015;56:1266–71. https://doi.org/10.1016/j.tetlet.2015.01.138.Suche in Google Scholar

36. Kamal, A, Babu, KS, Ali Hussaini, SM, Srikanth, PS, Moku, B, Abdullah, A. Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. Tetrahedron Lett 2015;56:4619–22. https://doi.org/10.1016/j.tetlet.2015.06.006.Suche in Google Scholar

37. Bachhav, HM, Bhagat, SB, Telvekar, VN. An efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Lett 2011;52:5697–701. https://doi.org/10.1016/j.tetlet.2011.08.105.Suche in Google Scholar

38. de Andrade, VSC, de Mattos, MCS. One-pot telescoped synthesis of thiazole derivatives from β-keto esters and thioureas promoted by tribromoisocyanuric acid. Synthesis 2018;50:4867–74.10.1055/s-0037-1610243Suche in Google Scholar

39. Liu, H, Zhou, F, Luo, W, Chen, Y, Zhang, C, Ma, C. Application of α-amino acids for the transition-metal-free synthesis of pyrrolo[1,2-a]quinoxalines. Org Biomol Chem 2017;15:7157–64. https://doi.org/10.1039/c7ob01688c.Suche in Google Scholar PubMed

40. Brust, A, Cuny, E. Reducing disaccharides and their 1,2-dicarbonyl intermediates as building blocks for nitrogen heterocycles. RSC Adv 2014;4:5759–67. https://doi.org/10.1039/c3ra47349j.Suche in Google Scholar

41. Kolla, SR, Lee, YR. EDTA-catalyzed synthesis of 3,4-dihydroquinoxalin-2-amine derivatives by a three-component coupling of one-pot condensation reactions in an aqueous medium. Tetrahedron 2010;66:8938–44. https://doi.org/10.1016/j.tet.2010.09.050.Suche in Google Scholar

42. Murthy, SN, Bandaru, M, Yadavalli, VDN. Revisiting the Hinsberg reaction: facile and expeditious synthesis of 3-substituted quinoxalin-2(1H)-ones under catalyst-free conditions in water. Helv Chim Acta 2010;93:1216–20. https://doi.org/10.1002/hlca.200900358.Suche in Google Scholar

43. Lassagne, F, Chevallier, F, Roisnel, T, Dorcet, V, Mongin, F, Domingo, LR. A combined experimental and theoretical study of the ammonium bifluoride catalyzed regioselective synthesis of quinoxalines and pyrido[2,3-b]pyrazines. Synthesis 2015;47:2680–9. https://doi.org/10.1055/s-0034-1380678.Suche in Google Scholar

44. Amarajothi, D, Kuppusamy, K, Kasi, P. Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Lett 2011;52:69–73.10.1016/j.tetlet.2010.10.146Suche in Google Scholar

45. Ghosh, P, Mandal, A. Synthesis of functionalized benzimidazoles and quinoxalines catalyzed by sodium hexafluorophosphate bound Amberlite resin in aqueous medium. Tetrahedron Lett 2012;53:6483–8. https://doi.org/10.1016/j.tetlet.2012.09.045.Suche in Google Scholar

46. Pawar, OB, Chavan, FR, Suryawanshi, VS, Shinde, VS, Shinde, ND. Thiamine hydrochloride: an efficient catalyst for one-pot synthesis of quinoxaline derivatives at ambient temperature. J Chem Sci 2013;125:159–63. https://doi.org/10.1007/s12039-012-0345-y.Suche in Google Scholar

47. Jafarpour, M, Rezaeifard, A, Heidari, M. A new catalytic method for eco-friendly synthesis of quinoxalines by zirconium (IV) oxide chloride octahydrate under mild conditions. Lett Org Chem 2011;8:202–9. https://doi.org/10.2174/157017811795038412.Suche in Google Scholar

48. Lassagne, F, Chevallier, F, Mongin, F. Saccharin as an organocatalyst for quinoxalines and pyrido[2,3-b]pyrazines synthesis. Synth Commun 2013;44:141–9. https://doi.org/10.1080/00397911.2013.795596.Suche in Google Scholar

49. Mohammadi, K, Hasaninejad, A, Niad, M, Najmi, M. Application of metalloporphyrins as new catalysts for the efficient, mild and regioselective synthesis of quinoxaline derivatives. J Porphyr Phthalocyanines 2010;14:1052–8. https://doi.org/10.1142/s108842461000294x.Suche in Google Scholar

50. Ghorbani-Vaghei, R, Amiri, M, Karimi-Nami, R, Salimi, Z. Efficient one-pot synthesis of mono and bis-Ncyclohexyl-3-alkyl(aryl)-quinoxaline-2-amines using N-halo catalysts. RSC Adv 2013;3:25924–9. https://doi.org/10.1039/c3ra44496a.Suche in Google Scholar

51. Kadam, HK, Khan, S, Kunkalkar, RA, Tilve, SG. Graphite catalyzed green synthesis of quinoxalines. Tetrahedron Lett 2013;54:1003–7. https://doi.org/10.1016/j.tetlet.2012.12.041.Suche in Google Scholar

52. Elumalai, V, Hansen, JH. A green, scalable, and catalyst-free one-minute synthesis of quinoxalines. SynOpen 2021;5:43–8.10.1055/s-0040-1706021Suche in Google Scholar

53. Han, X, Lei, T, Yang, X-L, Zhao, L-M, Chen, B, Tung, C-H, et al.. Aerobic oxidation of β-dicarbonyls into vicinal tricarbonyls by Cu(II) salts for one-pot synthesis of quinoxalines. Tetrahedron Lett 2017;58:1770–4. https://doi.org/10.1016/j.tetlet.2017.03.071.Suche in Google Scholar

54. Yang, Z, He, J, Wei, Y, Li, W, Liu, P, Zhao, J, et al.. NCS-promoted thiocyanation and selenocyanation of pyrrolo[1,2-a]quinoxalines. Org Biomol Chem 2020;18:9088–94. https://doi.org/10.1039/d0ob01818j.Suche in Google Scholar PubMed

55. Kovuru, G, Saini, A, Chandrudu, SN, Devarapalli, CR, Yadav, H, Kumar, B. Copper-catalyzed aerobic oxidative coupling of o-phenylenediamines with 2-aryl/heteroarylethylamines: direct access to construct quinoxalines. Org Biomol Chem 2017;15:2259–68.10.1039/C7OB00122CSuche in Google Scholar

56. Kachigere, BH, Kanchugarkoppal, SR. One-step approach for synthesis of functionalized quinoxalines mediated by T3P® - DMSO or T3P® via tandem oxidation - condensation or condensation reaction. RSC Adv 2016;6:57154–62.10.1039/C6RA03078ESuche in Google Scholar

57. Yang, Z, He, J, Wei, Y, Li, W, Liu, P. KI/TBHP-promoted [3+2] cycloaddition of pyrrolo[1,2-a]quinoxaline and N-arylsulfonylhydrazones. Org Biomol Chem 2020;18:3360–6. https://doi.org/10.1039/d0ob00494d.Suche in Google Scholar PubMed

58. An, Z, Zhao, L, Wu, M, Ni, J, Qi, Z, Yu, G, et al.. FeCl3-Catalyzed synthesis of pyrrolo[1,2-a]-quinoxaline derivatives from 1-(2-aminophenyl)-pyrroles through annulation and cleavage of cyclic ethers. Chem Commun 2017;53:11572–5. https://doi.org/10.1039/c7cc07089f.Suche in Google Scholar PubMed

59. Reddy, BVS, Reddy, BP, Reddy, PVG, Siriwardena, A. An efficient lactamisation/N-acyliminium Pictet–Spengler domino strategy for the diasteroselective synthesis of polyhydroxylated quinoxalinone, β-carboline, and quinazolinone derivatives. Org Biomol Chem 2016;14:4276–82. https://doi.org/10.1039/c6ob00250a.Suche in Google Scholar PubMed

60. Lin, Y, Lei, X, Yang, Q, Yuan, J, Ding, Q, Xu, J, et al.. N-heterocyclic carbene catalyzed one-pot synthesis of 2,3-diarylquinoxalines. Synthesis 2012;44:2699–706.10.1055/s-0032-1316687Suche in Google Scholar

61. Kumbhar, A, Kamble, S, Barge, M, Rashinkar, G, Salunkhe, R. Brönsted acid hydrotrope combined catalyst for the environmentally benign synthesis of quinoxalines and pyrido[2,3-b]pyrazines in an aqueous medium. Tetrahedron Lett 2012;53:2756–60. https://doi.org/10.1016/j.tetlet.2012.03.097.Suche in Google Scholar

62. Bhutia, ZT, Kumar, GP, Das, A, Biswas, M, Chatterjee, A, Banerjee, M. A facile, catalyst-free mechano-synthesis of quinoxalines and their in-vitro antibacterial activity study. ChemistrySelect 2017;2:1183–7. https://doi.org/10.1002/slct.201601672.Suche in Google Scholar

63. Igor, A, Khalymbadzha, RF, Fatykhov, ON, Chupakhina, VN, Charushina, TA, Tseitler, AD, et al.. Transition-metal-free С-С coupling of 5,7-dihydroxybenzopyrones with quinoxalones and pteridinones. Synthesis 2018;50:2423–31.10.1055/s-0037-1609482Suche in Google Scholar

64. Preetam, A, Nath, M. An eco-friendly Pictet-Spengler approach to pyrrolo- and indolo[1,2-a]quinoxalines using p-dodecylbenzenesulfonic acid as an efficient Brønsted acid catalyst. RSC Adv 2015;5:21843–53. https://doi.org/10.1039/c4ra16651e.Suche in Google Scholar

65. Mukherjee, C, Kenneth, TW, Edward, RB. Microwave-assisted synthesis of novel imidazo [2,1-b]thiazole derivative attached to quinoxalinones. Tetrahedron Lett 2012;53:6008–14. https://doi.org/10.1016/j.tetlet.2012.08.093.Suche in Google Scholar

66. Jadhav, SA, Sarkate, AP, Shioorkar, MG, Shinde, DB. Expeditious one-pot multicomponent microwave-assisted green synthesis of substituted 2-phenyl quinoxaline and 7-bromo-3-(4-ethyl phenyl)pyrido[2,3-b]pyrazine in water-PEG and water-ethanol. Synth Commun 2017;47:1661–7. https://doi.org/10.1080/00397911.2017.1337153.Suche in Google Scholar

67. Maiti, S, Roy, N, Babu, LT, Moharana, P, Athira, CC, Sreedhar, ED, et al.. Cu(II), Ir(I), and CuO nanocatalyzed mild synthesis of luminescent symmetrical and unsymmetrical bis(triazolylmethyl)quinoxalines: biocompatibility, cytotoxicity, live-cell imaging and biomolecular interaction. New J Chem 2020;44:920–31. https://doi.org/10.1039/c9nj03131f.Suche in Google Scholar

68. Akondi, AM, Mekala, S, Kantam, ML, Trivedi, R, Chowhane, LR, Das, A. An expedient microwave-assisted regio- and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. New J Chem 2017;41:873–8. https://doi.org/10.1039/c6nj02869a.Suche in Google Scholar

69. Jeena, V, Robinson, RS. An environmentally friendly, cost-effective synthesis of quinoxalines: the influence of microwave reaction conditions. Tetrahedron Lett 2014;55:642–5. https://doi.org/10.1016/j.tetlet.2013.11.100.Suche in Google Scholar

70. Chatterjee, N, Sarkar, S, Pal, R, Kumar, AS. An approach toward the syntheses of triazolo benzoxazines, triazolo quinoxalines, triazolo benzodiazepines, triazolo benzoxazepines, and triazolo benzothiazines via a convenient and straightforward protocol using basic alumina as solid support. Tetrahedron Lett 2014;55:2261–5. https://doi.org/10.1016/j.tetlet.2014.02.080.Suche in Google Scholar

71. Padmavathy, K, Nagendrappa, G, Geetha, KV. A rapid synthesis of quinoxalines starting from ketones. Tetrahedron Lett 2011;52:544–7. https://doi.org/10.1016/j.tetlet.2010.11.116.Suche in Google Scholar

72. Zhang, X-Z, Wang, J-X, Bai, L. Microwave-assisted synthesis of quinoxalines in PEG-400. Synth Commun 2011;41:2053–63. https://doi.org/10.1080/00397911.2010.496134.Suche in Google Scholar

73. Nikumbh, SP, Raghunadh, A, Murthy, VN, Jinkala, R, Joseph, SC, Murthy, YLN, et al.. A greener approach towards double heteroarylation of N, O and S nucleophiles: synthesis of bioactive polynuclear fused N-heteroarenes. RSC Adv 2015;5:74570–4. https://doi.org/10.1039/c5ra16727b.Suche in Google Scholar

74. Mahnaz, S-S, Farhad, S, Masoumeh, A, Mohadeseh, S. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and an efficient solid acid catalyst. Res Chem Intermed 2016;42:1091–9.10.1007/s11164-015-2075-5Suche in Google Scholar

75. Ahmed, K, Babu, KS, Ali Hussaini, SM, Rasala, M, Abdullah, A. Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Lett 2015;56:2803–8.10.1016/j.tetlet.2015.04.046Suche in Google Scholar

76. Ahmed, K, Babu, KS, Kovvuri, J, Vindravath, M, Kumar, AR, Abdullah, A. Amberlite IR-120H: an efficient and recyclable heterogeneous catalyst for the synthesis of pyrrolo[1,2-a]quinoxalines and 5oH-spiro [indoline-3,4o-pyrrolo[1,2-a]quinoxalin]-2-ones. Tetrahedron Lett 2015;56:7012–5.10.1016/j.tetlet.2015.11.003Suche in Google Scholar

77. Das, K, Mondal, A, Srimani, D. Phosphine free Mn-complex catalyzed dehydrogenative C-C and C-heteroatom bond formation: a sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives. Chem Commun 2018;54:10582–5. https://doi.org/10.1039/c8cc05877f.Suche in Google Scholar PubMed

78. Roy, B, Ghosh, S, Ghosh, P, Basu, B. Graphene oxide (GO) or reduced graphene oxide (rGO): efficient catalysts for the one-pot metal-free synthesis of quinoxalines from 2-nitroaniline. Tetrahedron Lett 2015;56:6762–7. https://doi.org/10.1016/j.tetlet.2015.10.065.Suche in Google Scholar

79. Paul, S, Basu, B. Synthesis of libraries of quinoxalines through eco-friendly tandem oxidation-condensation or condensation reactions. Tetrahedron Lett 2011;52:6597–602. https://doi.org/10.1016/j.tetlet.2011.09.141.Suche in Google Scholar

80. Nandi, GC, Samai, S, Kumar, R, Singh, MS. Silica-gel-catalyzed efficient synthesis of quinoxaline derivatives under solvent-free conditions. Synth Commun 2011;41:417–25. https://doi.org/10.1080/00397910903576685.Suche in Google Scholar

81. Arunachalam, S, Ayyakkannu, R, Kuo, CH. Visible-light-induced, copper(I)-catalyzed C-N coupling between o-phenylenediamine and terminal alkynes: one-pot synthesis of 3-phenyl-2-hydroxy-quinoxalines. Photochem Photobiol Sci 2013;12:2110–8.10.1039/c3pp50186hSuche in Google Scholar PubMed

82. Das, DB, Pampana, VKK, Kuo, CH. Copper catalyzed photoredox synthesis of α-keto esters, quinoxaline, naphthoquinone: controlled oxidation of terminal alkynes to glyoxals. Chem Sci 2018;9:7318–26. https://doi.org/10.1039/c8sc03447h.Suche in Google Scholar PubMed PubMed Central

83. Sarma, D, Majumdar, B, Deori, B, Jain, S, Sarma, TK. Photoinduced enhanced decomposition of TBHP: a convenient and greener pathway for aqueous domino synthesis of quinazolinones and quinoxalines. ACS Omega 2021;6:11902–10. https://doi.org/10.1021/acsomega.1c00211.Suche in Google Scholar PubMed PubMed Central

84. Lande, M, Navgire, M, Rathod, S, Katkar, S, Yelwande, A, Arbad, B. An efficient green synthesis of quinoxaline derivatives using carbon-doped MoO3-TiO2 as a heterogeneous catalyst. J Ind Eng Chem 2012;18:277–82. https://doi.org/10.1016/j.jiec.2011.11.048.Suche in Google Scholar

85. Shaik, S, Kazi, AH, Abbaraju, VDNK, Alugubelli, GR, Kolli, D, Nakhi, A, et al.. Ultrasound-assisted synthesis of 3-alkynyl substituted 2-chloroquinoxaline derivatives: their in silico assessment as potential ligands for N-protein of SARS-CoV-2. Tetrahedron Lett 2020;61:152336–43.10.1016/j.tetlet.2020.152336Suche in Google Scholar PubMed PubMed Central

86. Sarmah, B, Srivastava, R. Sustainable catalytic process with a high eco-scale score for the synthesis of five-, six-, and seven-membered heterocyclic compounds using nanocrystalline zeolites. Asian J Org Chem 2017;6:873–89. https://doi.org/10.1002/ajoc.201700120.Suche in Google Scholar

87. Sepideh, L, Hossein, N. Chitosan-encapsulated manganese ferrite particles bearing sulfonic acid group catalyzed efficient synthesis of spiro indenoquinoxalines. RSC Adv 2020;10:33334–43.10.1039/D0RA04925ESuche in Google Scholar

88. Bhoomireddy, RPR, Sirigireddy, SR, Peddiahgari, VGR. Cu(OTf)2 loaded protonated trititanate nanotubes catalyzed reaction: a facile method to furo[2,3-b]quinoxalines synthesis. New J Chem 2018;42:5972–7. https://doi.org/10.1039/c8nj00287h.Suche in Google Scholar

89. Singh, R, Ganaie, SA, Singh, A, Chaudhary, A. Carbon-SO3H catalyzed expedient synthesis of new spiro-[indeno[1,2-b]quinoxaline-[11,2′]-thiazolidine]-4′-ones as biologically important scaffold. Synth Commun 2019;49:80–93. https://doi.org/10.1080/00397911.2018.1542003.Suche in Google Scholar

90. Andriamitantsoa, RS, Wang, J, Dong, W, Gao, H, Ge, W. SO3H-functionalized metal-organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv 2016;6:35135–43. https://doi.org/10.1039/c6ra02575g.Suche in Google Scholar

91. Huang, T, Jiang, D, Chen, J, Gao, W, Ding, J, Wu, H. Silica sulfuric acid (SSA)/polyethylene glycol (PEG) as a recyclable system for the synthesis of quinoxalines and pyrazines. Synth Commun 2011;41:3334–43. https://doi.org/10.1080/00397911.2010.517894.Suche in Google Scholar

92. Arumugam, N, Almansour, AI, Kumar, RS, Ali Al-Aizari, AJM, Alaqeel, SI, Kansız, S, et al.. Regio- and diastereoselective synthesis of spiropyrroloquinoxaline grafted indole heterocyclic hybrids and evaluation of their anti-Mycobacterium tuberculosis activity. RSC Adv 2020;10:23522–31. https://doi.org/10.1039/d0ra02525a.Suche in Google Scholar PubMed PubMed Central

93. Mariappan, J, Amarajothi, D, Pitchumani, K. One-pot synthesis of 2-substituted quinoxalines using K10-montmorillonite as heterogeneous catalyst. Tetrahedron Lett 2014;55:1616–20.10.1016/j.tetlet.2014.01.087Suche in Google Scholar

94. Srinivas, C, Kumar, CNSSP, Rao, VJ, Palaniappan, S. Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives. J Mol Catal Chem 2007;265:227–30. https://doi.org/10.1016/j.molcata.2006.10.018.Suche in Google Scholar

95. Mani, KS, Kaminsky, W, Subramaniam, PR. A facile atom economic one-pot multicomponent synthesis of bioactive spiroindenoquinoxaline pyrrolizines as a potent anti-oxidant and anti-cancer agents. New J Chem 2018;42:301–10. https://doi.org/10.1039/c7nj02993d.Suche in Google Scholar

96. Song, W, Liu, P, Lei, M, You, H, Chen, X, Chen, H, et al.. FeCl3 and morpholine as efficient cocatalysts for the one-step synthesis of quinoxalines from α-hydroxyketones and 1,2-diamines. Synth Commun 2012;42:236–45. https://doi.org/10.1080/00397911.2010.523489.Suche in Google Scholar

97. Deivasigamani, G, Rajukrishnan, SBA. A facile atom - economical synthesis of highly substituted pyrazolo-N-methyl-piperidine grafted spiro-indenoquinoxaline pyrrolidine heterocycles via a sequential multicomponent reaction. Synth Commun 2020;50:1–10. https://doi.org/10.1080/00397911.2020.1812081.Suche in Google Scholar

98. Kailasam, SM, Murugesapandian, B, Kaminsky, W, Subramaniam, PR. Enantioselective approach towards the synthesis of spiro-indeno [1,2-b] quinoxaline pyrrolothiazoles as anti-oxidant and antiproliferative. Tetrahedron Lett 2018;59:2921–9.10.1016/j.tetlet.2018.06.035Suche in Google Scholar

99. Lima, RN, Porto, ALM. Facile synthesis of new quinoxalines from ethyl gallate by green chemistry protocol. Tetrahedron Lett 2017;58:825–8. https://doi.org/10.1016/j.tetlet.2016.12.062.Suche in Google Scholar

100. Reddy, MA, Thomas, A, Mallesham, G, Sridhar, B, Rao, VJ, Bhanuprakash, K. Synthesis of novel twisted carbazole-quinoxaline derivatives with 1,3,5-benzene core: bipolar molecules as hosts for phosphorescent OLEDs. Tetrahedron Lett 2011;52:6942–7. https://doi.org/10.1016/j.tetlet.2011.10.074.Suche in Google Scholar

101. Issa, DAE, Habib, NS, Wahab, AEA. Design, synthesis and biological evaluation of novel 1,2,4-triazolo and 1,2,4-triazino[4,3-a]quinoxalines as potential anti-cancer and antimicrobial agents. Med Chem Commun 2015;6:202–11. https://doi.org/10.1039/c4md00257a.Suche in Google Scholar

102. Li, D, Mao, T, Huang, J, Zhu, Q. A one-pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalines from 1-azido-2-isocyanoarenes with high bond-forming efficiency. Chem Commun 2017;53:1305–8. https://doi.org/10.1039/c6cc08543a.Suche in Google Scholar PubMed

103. Xia, R, Guo, T, Chen, M, Su, S, He, J, Tang, X, et al.. Synthesis, antiviral and antibacterial activities and action mechanism of penta-1,4-dien-3-one oxime ether derivatives containing a quinoxaline moiety. New J Chem 2019;43:16461–7. https://doi.org/10.1039/c9nj03019k.Suche in Google Scholar

104. Cui, X-F, Hu, F-P, Zhou, X-Q, Zhan, Z-Z, Huang, G-S. Ruthenium-catalyzed synthesis of pyrrolo[1,2-a]quinoxaline derivatives from 1-(2-aminophenyl)pyrroles and sulfoxonium ylides. Synlett 2020;31:1205–10.10.1055/s-0040-1707119Suche in Google Scholar

105. Settypalli, T, Chunduri, VR, Maddineni, AK, Begari, N, Allagadda, R, Kotha, P, et al.. Design, synthesis, in silico docking studies and biological evaluation of novel quinoxaline-hydrazide hydrazone-1,2,3-triazole hybrids as α-glucosidase inhibitors, anti-oxidants. New J Chem 2019;43:15435–52. https://doi.org/10.1039/c9nj02580d.Suche in Google Scholar

106. Shahrestani, N, Salahi, F, Tavakoli, N, Jadidi, K, Hamzehloueian, M, Notash, B. Asymmetric synthesis approach of enantiomerically pure spiro-indenoquinoxaline pyrrolidines and spiro-indenoquinoxaline pyrrolizidines. Tetrahedron Asymmetry 2015;26:1117–29. https://doi.org/10.1016/j.tetasy.2015.08.013.Suche in Google Scholar

107. Xie, C, Zhang, Z, Li, D, Gong, J, Han, X, Liu, X, et al.. Dimethyl sulfoxide involved one-pot synthesis of quinoxaline derivatives. J Org Chem 2017;82:3491–9. https://doi.org/10.1021/acs.joc.6b02977.Suche in Google Scholar PubMed

108. Nikumbh, SP, Akula, R, Rao, TS, Murthy, VN, Joseph, SC, Murthy, YLN, et al.. A cascade reaction for the new and direct synthesis of indolofuroquinoxalines. RSC Adv 2016;6:23489–97. https://doi.org/10.1039/c6ra03556f.Suche in Google Scholar

109. Chang, M-Y, Lee, T-W, Hsu, R-T, Yen, T-L. Synthesis of quinoxaline analogues. Synthesis 2011;19:3143–51. https://doi.org/10.1055/s-0030-1260147.Suche in Google Scholar

110. Zhang, Z, Xie, C, Tan, X, Song, G, Wen, L, Gao, H, et al.. I2-Catalyzed one-pot synthesis of pyrrolo[1,2-a]quinoxaline and imidazo[1,5-a]quinoxaline derivatives via sp3 and sp2 C-H cross-dehydrogenative coupling. Org Chem Front 2015;2:942–6. https://doi.org/10.1039/c5qo00124b.Suche in Google Scholar

111. Lu, D, Xiang, Q, Zhou, L, Zeng, Q. Catalyst-free synthesis of quinoxalines. Asian J Chem 2015;27:2639–41. https://doi.org/10.14233/ajchem.2015.18680.Suche in Google Scholar

112. Zhang, Z, Xie, C, Feng, L, Ma, C. PTSA-catalyzed one-pot synthesis of quinoxalines using DMSO as the oxidant. Synth Commun 2016;46:1507–18. https://doi.org/10.1080/00397911.2016.1213297.Suche in Google Scholar

113. Saha, B, Mitra, B, Brahmin, D, Sinha, B, Ghosh, P. 2-Iodo benzoic acid: an unconventional precursor for the one-pot multicomponent synthesis of quinoxaline using organo Cu (II) catalyst. Tetrahedron Lett 2018;59:3657–63. https://doi.org/10.1016/j.tetlet.2018.08.051.Suche in Google Scholar

114. Xie, C, Feng, C, Li, W, Ma, X, Ma, X, Liu, Y, et al.. Efficient synthesis of pyrrolo[1,2-a]quinoxalines catalyzed by Brønsted acid through cleavage of C-C bond. Org Biomol Chem 2016;14:8529–35. https://doi.org/10.1039/c6ob01401a.Suche in Google Scholar PubMed

115. Narsaiah, AV, Kumar, JK. Glycerin and CeCl3.7H2O: a new and efficient recyclable reaction medium for the synthesis of quinoxalines. Synth Commun 2012;42:883–92. https://doi.org/10.1080/00397911.2010.533050.Suche in Google Scholar

116. Wang, C, Li, Y, Zhao, J, Cheng, B, Wang, H, Zhai, H. An environmentally friendly approach to pyrrolo[1,2-a]quinoxalines using oxygen as the oxidant. Tetrahedron Lett 2016;57:3908–11. https://doi.org/10.1016/j.tetlet.2016.07.041.Suche in Google Scholar

117. Fatemeh, H, Ahmad, S. Synthesis of oxazepin-quinoxaline bis-heterocyclic scaffolds via an efficient three-component synthetic protocol. RSC Adv 2014;4:46844–50.10.1039/C4RA08486ASuche in Google Scholar

118. Chen, W, Du, Y, Wang, M, Fang, Y, Yu, W, Chang, J. Synthesis of benzo[4,5]imidazo[1,2-a]quinoxalines by I2-mediated sp3 C-H amination. Org Chem Front 2020;7:3705–8. https://doi.org/10.1039/d0qo01101k.Suche in Google Scholar

119. Wang, X, Liu, H, Xie, C, Zhou, F, Ma, C. Terminal methyl as a one-carbon synthon: synthesis of quinoxaline derivatives via radical-type transformation. New J Chem 2020;44:2465–70. https://doi.org/10.1039/c9nj04910j.Suche in Google Scholar

120. Shee, S, Ganguli, K, Jana, K, Kundu, S. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chem Commun 2018;54:6883–6. https://doi.org/10.1039/c8cc02366b.Suche in Google Scholar PubMed

121. Aichhorn, S, Himmelsbach, M, Schöfberger, W. Synthesis of quinoxalines or quinolin-8-amines from N-propargyl aniline derivatives employing tin and indium chlorides. Org Biomol Chem 2015;13:9373–80. https://doi.org/10.1039/c5ob01532d.Suche in Google Scholar PubMed

122. Vadagaonkar, KS, Kalmode, HP, Murugan, K, Chaskar, AC. I2 catalyzed tandem protocol for synthesis of quinoxalines via sp3, sp2 and sp C-H functionalization. RSC Adv 2015;5:5580–90. https://doi.org/10.1039/c4ra08589b.Suche in Google Scholar

123. Tran, LT, Ho, TH, Phan, NTA, Nguyen, TT, Phan, NTS. Sulfur-mediated annulation of 1,2-phenylenediamines towards benzofuro- and benzothieno-quinoxalines. Org Biomol Chem 2020;18:5652–9. https://doi.org/10.1039/d0ob00887g.Suche in Google Scholar PubMed

Published Online: 2022-03-08

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Recent endeavors in microbial remediation of micro- and nanoplastics
  4. Metal nanoparticles and its application on phenolic and heavy metal pollutants
  5. The story of nitrogen
  6. Recent development of imidazole derivatives as potential anticancer agents
  7. Indole based prostate cancer agents
  8. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents
  9. Small modular nuclear reactors are mostly bad policy
  10. A holistic environmental investigation of complementary energy in Alberta
  11. Green synthesis of various saturated S-heterocyclic scaffolds: an update
  12. Recent advances of heterocycle based anticancer hybrids
  13. Molecular docking and MD: mimicking the real biological process
  14. Synthesis of quinazolinone and quinazoline derivatives using green chemistry approach
  15. Nuclear fusion: the promise of endless energy
  16. Finance for Green Chemistry through Currency Mix
  17. Synthesis of bioactive scaffolds catalyzed by agro-waste-based solvent medium
  18. Recent developments in the green synthesis of biologically relevant cinnolines and phthalazines
  19. Detection of Rapid Eye Movement Behaviour Sleep Disorder using Time and Frequency Analysis of EEG Signal Applied on C4-A1 Channels
  20. Recent developments in C–C bond formation catalyzed by solid supported palladium: a greener perspective
  21. Visible-light-mediated metal-free C–Si bond formation reactions
  22. An overview of quinoxaline synthesis by green methods: recent reports
  23. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs
  24. Synthesis of bioactive natural products and their analogs at room temperature – an update
  25. One-pot multi-component synthesis of diverse bioactive heterocyclic scaffolds involving 6-aminouracil or its N-methyl derivatives as a versatile reagent
  26. Synthesis of new horizons in benzothiazole scaffold and used in anticancer drug development
  27. Triazine based chemical entities for anticancer activity
  28. Modification of kaolinite/muscovite clay for the removal of Pb(II) ions from aqueous media
  29. In silico design of ACE2 mutants for competitive binding of SARS-CoV-2 receptor binding domain with hACE2
  30. Computational study of Cu n AgAu (n = 1–4) clusters invoking DFT based descriptors
  31. Development of an online assessment system to evaluate knowledge on chemical safety and security
  32. Developing a questionnaire for diabetes mellitus type 2 risk effects and precondition factors – multivariate statistical paths
  33. Antioxidant and antibacterial activities of two xanthones derivatives isolated from the leaves extract of Anthocleista schweinfurthii Gilg (Loganiaceae)
  34. The stability increase of α-amylase enzyme from Aspergillus fumigatus using dimethyladipimidate
  35. Sustainability of ameliorative potentials of urea spiked poultry manure biochar types in simulated sodic soils
  36. Cytotoxicity test and antibacterial assay on the compound produced by the isolation and modification of artonin E from Artocarpus kemando Miq.
  37. Effects of alum, soda ash, and carbon dioxide on 40–50 year old concrete wastewater tanks
Heruntergeladen am 27.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0086/pdf
Button zum nach oben scrollen