Abstract
The flexibility and sensitivity of traditional sensors is hard to achieve unless wearable technology develops. Flexible piezoresistive sensor (FPS) is one of the solutions in the nondestructive health monitoring of living body. In the application of sensing devices for physiological or biochemical signals, fast feedback speed and accurate signal feedback are essential requirements for obtaining sensitive response signals. Additionally, the development of FPS has promoted the research of conductive materials that could be used in wearable devices. However, improving the performance of functional materials is an important way of effort for researchers. Recently, MXene as a new kind of 2D materials and their composites have made a tremendous impact in the field of sensors for wearable health sensors. Numerous conductive materials based 2D MXene could expedite their practical application in FPS by overcoming the present limitations of FPS such as poor responsivity, signal accuracy, and the narrower corresponding range. There has been plenty of breakthrough in the MXene-based FPS in the past several years. The main purpose of this paper is reviewing the recent development of MXene-based FPS and providing an outlook on the future development of it.
Funding source: Talent start-up fund
Award Identifier / Grant number: GCC2023033
-
Research ethics: Not applicable.
-
Author contributions: Dr. Tong Xu is responsible for the writing and review of this paper, and Mr. Peng Hejian is responsible for the secondary revision and supplementary literature review of this paper. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Talent start-up fund (GCC2023033).
-
Data availability: Not applicable.
References
1. Sang, M.; Zhang, J. S.; Liu, S.; Zhou, J. Y.; Wang, Y.; Deng, H. X.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Advanced MXene/Shear Stiffening Composite-Based Sensor with High-Performance Electromagnetic Interference Shielding and Anti-impacting Bi-protection Properties for Smart Wearable Device. Chem. Eng. J. 2022, 440, 135896; https://doi.org/10.1016/j.cej.2022.135869.Suche in Google Scholar
2. Zhang, S. P.; Chhetry, A.; Zahed, M. A.; Sharma, S.; Park, C.; Yoon, S.; Park, J. Y. On-skin Ultrathin and Stretchable Multifunctional Sensor for Smart Healthcare Wearables. Flex. Electron. 2022, 6, 11; https://doi.org/10.1038/s41528-022-00140-4.Suche in Google Scholar
3. Arulraj, A.; Mangalaraja, R.; Khalid, M. MXene: Pioneering 2D Materials. In Fundamental Aspects and Perspectives of MXenes; Springer, 2022; pp 1–16.10.1007/978-3-031-05006-0_1Suche in Google Scholar
4. Li, S.; Zhang, Y.; Huang, H. Black Phosphorus-Based Heterostructures for Photocatalysis and Photoelectrochemical Water Splitting. J. Energy Chem. 2022, 67, 745–779; https://doi.org/10.1016/j.jechem.2021.11.023.Suche in Google Scholar
5. Sivasankarapillai, V. S.; Sharma, T. S. K.; Wabaidur, K. Y. H. S. M.; Angaiah, S.; Dhanusuraman, R. MXene Based Sensing Materials: Current Status and Future Perspectives. ES Energy Environ. 2022, 15, 4–14.Suche in Google Scholar
6. Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (G-C3n4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022, 12 (2), 294–367; https://doi.org/10.3390/nano12020294.Suche in Google Scholar PubMed PubMed Central
7. Pattanayak, D. S.; Pal, D.; Mishra, J.; Thakur, C.; Wasewar, K. L. Doped Graphitic Carbon Nitride (G-C3n4) Catalysts for Efficient Photodegradation of Tetracycline Antibiotics in Aquatic Environments. Environ. Sci. Pollut. Res. 2022, 30, 1–8; https://doi.org/10.1007/s11356-022-19766-y.Suche in Google Scholar PubMed
8. Wang, L.; Zhang, H.; Zhuang, T.; Liu, J.; Sojic, N.; Wang, Z. Sensitive Electrochemiluminescence Biosensing of Polynucleotide Kinase Using the Versatility of Two-Dimensional Ti3C2TX MXene Nanomaterials. Anal. Chim. Acta 2022, 1191, 339346; https://doi.org/10.1016/j.aca.2021.339346.Suche in Google Scholar PubMed
9. Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible Electronics Based on 2D Transition Metal Dichalcogenides. J. Mater. 2022, 10, 89–121; https://doi.org/10.1039/d1ta06741a.Suche in Google Scholar
10. Regan, E. C.; Wang, D.; Paik, E. Y.; Zeng, Y.; Zhang, L.; Zhu, J.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging Exciton Physics in Transition Metal Dichalcogenide Heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795; https://doi.org/10.1038/s41578-022-00440-1.Suche in Google Scholar
11. Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A. K. Synthesis of Various Dimensional Metal Organic Frameworks (MOFs) and Their Hybrid Composites for Emerging Applications-A Review. Chemosphere 2022, 298, 134184; https://doi.org/10.1016/j.chemosphere.2022.134184.Suche in Google Scholar PubMed
12. Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured Hybrids of Metal-Organic Frameworks (MOFs) and Covalent-Organic Frameworks (COFs). J. Mater. Chem. 2022, 10 (2), 475–507; https://doi.org/10.1039/d1ta06006f.Suche in Google Scholar
13. Hu, T.; Tang, L.; Feng, H.; Zhang, J.; Li, X.; Zuo, Y.; Lu, Z.; Tang, W. Metalorganic Frameworks (MOFs) and Their Derivatives as Emerging Catalysts for electroFenton Process in Water Purification. Coord. Chem. Rev. 2022, 451, 214277; https://doi.org/10.1016/j.ccr.2021.214277.Suche in Google Scholar
14. Chen, J.; Ding, Y.; Yan, D.; Huang, J.; Peng, S. Synthesis of MXene and its Application for Zinc-Ion Storage. SusMat 2022, 2 (3), 293–318; https://doi.org/10.1002/sus2.57.Suche in Google Scholar
15. Deng, F.; Wu, P.; Qian, G.; Shuai, Y.; Zhang, L.; Peng, S.; Shuai, C.; Wang, G. Silver-Decorated Black Phosphorus: A Synergistic Antibacterial Strategy. Nanotechnology 2022, 33 (24), 245708; https://doi.org/10.1088/1361-6528/ac5aee.Suche in Google Scholar PubMed
16. Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs): Recent Advances in Synthesis and Analytical Applications of MOF/COF Composites TrAC. Trends Anal. Chem. 2022, 157, 116741; https://doi.org/10.1016/j.trac.2022.116741.Suche in Google Scholar
17. Zhang, H.; Wang, L.; Zhuang, T.; Wei, Z.; Xia, J.; Wang, Z. Nano-hybrid Luminophores of Ti3C2Tx Quantum Dots-Gold Nanoparticles Based on In Situ Generation for Sensitive Electrochemi Luminescence Biosensing. Anal. Bioanal. Chem. 2022, 414 (23), 6753–6760; https://doi.org/10.1007/s00216-022-04235-9.Suche in Google Scholar PubMed
18. Uppuluri, R.; Gupta, A. S.; Rosas, A. S.; Mallouk, T. E. Soft Chemistry of Ion Exchangeable Layered Metal Oxides. Chem. Soc. Rev. 2018, 47 (7), 2401–2430; https://doi.org/10.1039/c7cs00290d.Suche in Google Scholar PubMed
19. Kalantar-zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two Dimensional and Layered Transition Metal Oxides. Appl. Mater. Today 2016, 5, 73–89; https://doi.org/10.1016/j.apmt.2016.09.012.Suche in Google Scholar
20. Guan, X.; Yuan, X.; Zhao, Y.; Wang, H.; Wang, H.; Bai, J.; Li, Y. Application of Functionalized Layered Double Hydroxides for Heavy Metal Removal: A Review. Sci. Total Environ. 2022, 838, 155693; https://doi.org/10.1016/j.scitotenv.2022.155693.Suche in Google Scholar PubMed
21. Karim, A. V.; Hassani, A.; Eghbali, P.; Nidheesh, P. Nanostructured Modified Layered Double Hydroxides (LDHs)-Based Catalysts: A Review on Synthesis, Characterization, and Applications in Water Remediation by Advanced Oxidation Processes. Curr. Opin. Solid State Mater. Sci. 2022, 26 (1), 100965; https://doi.org/10.1016/j.cossms.2021.100965.Suche in Google Scholar
22. Qureshi, S. S.; Javed, M.; Saeed, S.; Abr, R. o.; Mazari, S. A.; Mubarak, N. M.; Siddiqui, M. T. H.; Baloch, H. A.; Nizamuddin, S. Hydrothermal Carbonization of Oil Palm Trunk via Taguchi Method. Korean J. Chem. Eng. 2021, 38 (4), 797–806; https://doi.org/10.1007/s11814-021-0753-0.Suche in Google Scholar
23. Lim, G.; Bok, G.; Park, S. D.; Kim, Y. Thermally Conductive Hexagonal Boron Nitride/Spherical Aluminum Oxide Hybrid Composites Fabricated with Epoxyorganosiloxane. Ceram. Int. 2022, 48 (1), 1408–1414; https://doi.org/10.1016/j.ceramint.2021.09.227.Suche in Google Scholar
24. Zheng, Z.; Cox, M.; Li, B. Surface Modification of Hexagonal Boron Nitride Nanomaterials: a Review. J. Mater. Sci. 2018, 53 (1), 66–99; https://doi.org/10.1007/s10853-017-1472-0.Suche in Google Scholar
25. Li, S. N.; Yu, Z. R.; Guo, B. F.; Guo, K. Y.; Li, Y.; Gong, L. X.; Zhao, L.; Bae, J.; Tang, L. C. Environmentally Stable, Mechanically Flexible, Self-adhesive, and Electrically Conductive Ti3C2TX MXene Hydrogels for Wide-Temperature Strain Sensing. Nano Energy 2021, 90 (A), 106502; https://doi.org/10.1016/j.nanoen.2021.106502.Suche in Google Scholar
26. Chen, H. Y.; Chen, Z. Y.; Mao, M.; Wu, Y. Y.; Yang, F.; Gong, L. X.; Zhao, L.; Cao, C. F.; Song, P.; Gao, J. F.; Zhang, G. D.; Shi, Y. Q.; Cao, K.; Tang, L. C. Self-adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities. Adv. Funct. Mater. 2023, 33, 2304927; https://doi.org/10.1002/adfm.202304927.Suche in Google Scholar
27. Zhang, X.; Xiang, D.; Zhu, W.; Zheng, Y.; Harkin-Jones, E.; Wang, P.; Zhao, C.; Li, H.; Wang, B.; Li, Y. Flexible and High-Performance Piezoresistive Strain Sensors Based on Carbon Nanoparticles@Polyurethane Sponges. Compos. Sci. Technol. 2020, 200, 108437; https://doi.org/10.1016/j.compscitech.2020.108437.Suche in Google Scholar
28. Charara, M.; Luo, W.; Saha, M. C.; Liu, Y. Investigation of Lightweight and Flexible Carbon Nanofiber/Poly Dimethylsiloxane Nanocomposite Sponge for Piezoresistive Sensor Application. Adv. Eng. Mater. 2019, 21, 1–12; https://doi.org/10.1002/adem.201801068.Suche in Google Scholar
29. Liu, H.; Gao, H.; Hu, G. Highly Sensitive Natural Rubber/Pristine Graphene Strain Sensor Prepared by a Simple Method. Compos. Part B Eng. 2019, 171, 138–145; https://doi.org/10.1016/j.compositesb.2019.04.032.Suche in Google Scholar
30. Nguyen, T.; Dinh, T.; Phan, H. P.; Pham, T. A.; Dau, V. T.; Nguyen, N. T.; Dao, D. V. Advances in Ultrasensitive Piezoresistive Sensors: From Conventional to Flexible and Stretchable Applications. Mater. Horiz. 2021, 8, 2123–2150; https://doi.org/10.1039/d1mh00538c.Suche in Google Scholar PubMed
31. Ding, Y.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interfaces 2019, 11, 6685–6704; https://doi.org/10.1021/acsami.8b20929.Suche in Google Scholar PubMed
32. Chen, W.; Yan, X. Progress in Achieving High-Performance Piezoresistive and Capacitive Flexible Pressure Sensors: A Review. J. Mater. Sci. Technol. 2020, 43, 175–188; https://doi.org/10.1016/j.jmst.2019.11.010.Suche in Google Scholar
33. Cheng, M.; Zhu, G.; Zhang, F.; Tang, W. L.; Jianping, S.; Yang, J. Q.; Zhu, L. Y. A Review of Flexible Force Sensors for Human Health Monitoring. J. Adv. Res. 2020, 26, 53–68; https://doi.org/10.1016/j.jare.2020.07.001.Suche in Google Scholar PubMed PubMed Central
34. Zheng, Q.; Lee, J.; Shen, X.; Chen, X.; Kim, J. K. Graphene-based Wearable Piezoresistive Physical Sensors. Mater. Today 2020, 36, 158–179; https://doi.org/10.1016/j.mattod.2019.12.004.Suche in Google Scholar
35. Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chem. Eng. J. 2021, 406, 126777; https://doi.org/10.1016/j.cej.2020.126777.Suche in Google Scholar
36. Chen, M.; Li, K.; Cheng, G. M.; He, K.; Li, W. W.; Zhang, D. S.; Li, W. M.; Feng, Y.; Wei, L.; Li, W. J.; Zhong, G. H.; Yang, C. L. Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Appl. Mater. Interfaces 2019, 11, 2551–2558; https://doi.org/10.1021/acsami.8b20284.Suche in Google Scholar PubMed
37. Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A Highly Flexible and Sensitive Piezoresistive Sensor Based on MXene with Greatly Changed Interlayer Distances. Nat.Commun. 2017, 8, 1207; https://doi.org/10.1038/s41467-017-01136-9.Suche in Google Scholar PubMed PubMed Central
38. Bae, S. H.; Lee, Y.; Sharma, B. K.; Lee, H. J.; Kim, J. H.; Ahn, J. H. Graphene-based Transparent Strain Sensor. Carbon 2013, 51, 236–242; https://doi.org/10.1016/j.carbon.2012.08.048.Suche in Google Scholar
39. Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536; https://doi.org/10.1021/acsami.8b20902.Suche in Google Scholar PubMed
40. Zhang, X. W.; Pan, Y.; Zheng, Q.; Yi, X. S. Time Dependence of Piezoresistance for the Conductor‐filled Polymer Composites. J. Polym. Sci., Part B: Polym. Phys. 2000, 38 (21), 2739–2749; https://doi.org/10.1002/1099-0488(20001101)38:21<2739::aid-polb40>3.0.co;2-o.10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-OSuche in Google Scholar
41. Yang, X. D.; Sun, L. Y.; Zhang, C.; Huang, B. C.; Chua, Y. T.; Zhan, B. Modulating the Sensing Behaviors of Poly(styrene-Ethylene-Butylenestyrene)/Carbon Nanotubes with Low-dimensional Fillers for Large Deformation Sensors. Compos. Part B 2019, 160, 605–614; https://doi.org/10.1016/j.compositesb.2018.12.119.Suche in Google Scholar
42. Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S. H. Review-recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J. Electrochem. Soc. 2020, 167, 037561–037605; https://doi.org/10.1149/1945-7111/ab6828.Suche in Google Scholar
43. Yu, T. T.; Tao, Y. B.; Wu, Y. L.; Zhang, D. G.; Yang, J. Y.; Ge, G. Heterogeneous Multi-Material Flexible Piezoresistive Sensor with High Sensitivity and Wide Measurement Range. Micromachines 2023, 14, 716–727; https://doi.org/10.3390/mi14040716.Suche in Google Scholar PubMed PubMed Central
44. Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62; https://doi.org/10.1021/acsnano.7b06251.Suche in Google Scholar PubMed
45. Deshmukh, A.; Kovářík, T.; Pasha, S. K. K. State of the Art Recent Progress in Two Dimensional MXenes Based Gas Sensors and Biosensors: A Comprehensive Review. Coord. Chem. Rev. 2020, 424, 213514.10.1016/j.ccr.2020.213514Suche in Google Scholar
46. Fan, K. F.; Li, K.; Han, L. W. L.; Yang, Z. J.; Yang, J. J.; Zhang, J. Y.; Cheng, J. Multifunctional Double-Network Ti3C2Tx MXene Composite Hydrogels for Strain Sensors with Effective Electromagnetic Interference and UV Shielding Properties. Polymer 2023, 273, 125865; https://doi.org/10.1016/j.polymer.2023.125865.Suche in Google Scholar
47. Qi, X. D.; Zhu, T. Y.; Hu, W. W.; Jiang, W. J.; Yang, J. H.; Lin, Q.; Wang, Y. Multifunctional Polyacrylamide/Hydrated Salt/MXene Phase Change Hydrogels with High Thermal Energy Storage, Photothermal Conversion Capability and Strain Sensitivity for Personal Healthcare. Compos. Sci. Technol. 2023, 234, 109947; https://doi.org/10.1016/j.compscitech.2023.109947.Suche in Google Scholar
48. Zhu, T. Y.; Jiang, W. J.; Shi, X.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. MXene/Ag Doped Hydrated-Salt Hydrogels with Excellent Thermal/Light Energy Storage, Strain Sensing and Photothermal Antibacterial Performances for Intelligent Human Healthcare. Compos. Part A. 2023, 170, 107526; https://doi.org/10.1016/j.compositesa.2023.107526.Suche in Google Scholar
49. Dong, L. S.; Zhou, X. Y.; Zheng, S. X.; Luo, Z. F.; Nie, Y. X.; Feng, X.; Zhu, J. H.; Wang, Z. Z.; Lu, X. H.; Mu, L. W. Liquid Metal @ MXene Spring Supports Ionic Gel with Excellent Mechanical Properties for High-Sensitivity Wearable Strain Sensor. Chem. Eng. J. 2023, 458, 141370; https://doi.org/10.1016/j.cej.2023.141370.Suche in Google Scholar
50. Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and Flexible MXene/carboxymethyl Cellulose Aerogel for Electromagnetic Shielding, Energy Harvest and Self-Powered Sensing. Nano Energy 2022, 98, 107229; https://doi.org/10.1016/j.nanoen.2022.107229.Suche in Google Scholar
51. Cheng, Y. F.; Xie, M.; Ma, Y. N.; Wang, M. J.; Zhang, Y. H.; Liu, Z. Y.; Yan, S. W.; Ma, N.; Liu, M. Y.; Yue, Y.; Wang, J. B.; Li, L. Y. Optimization of Ion/Electron Channels Enabled by Multiscale MXene Aerogel for Integrated Self-healable Flexible Energy Storage and Electronic Skin System. Nano Energy 2023, 107, 108131; https://doi.org/10.1016/j.nanoen.2022.108131.Suche in Google Scholar
52. Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. N.; Zhang, Z.; Huang, Q.; Gao, Y. H. 3D Hybrid Porous MXene-Sponge Network and its Application in Piezoresistive Sensor. Nano Energy 2018, 50, 79–87; https://doi.org/10.1016/j.nanoen.2018.05.020.Suche in Google Scholar
53. Song, D. K.; Li, X. F.; Li, X. P.; Jia, X. Q.; Min, P.; Yu, Z. Z. Hollow-structured MXene-PDMS Composites as Flexible, Wearable and Highly Bendable Sensors with Wide Working Range. J. Colloid Interface Sci. 2019, 555, 751–758; https://doi.org/10.1016/j.jcis.2019.08.020.Suche in Google Scholar PubMed
54. Su, T. Y.; Liu, N. H.; Gao, Y. H.; Lei, D. D.; Wang, L. X.; Ren, Z. Q.; Zhang, Q. X.; Su, J.; Zhang, Z. MXene/Cellulose Nanofiber-Foam Based High Performance Degradable Piezoresistive Sensor with Greatly Expanded Interlayer Distances. Nano Energy 2021, 87, 106151; https://doi.org/10.1016/j.nanoen.2021.106151.Suche in Google Scholar
55. Zhai, W.; Xia, Q.; Zhou, K.; Yue, X.; Ren, M.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Multifunctional Flexible Carbon Black/Polydimethylsiloxane Piezoresistive Sensor with Ultrahigh Linear Range, Excellent Durability and Oil/water Separation Capability. Chem. Eng. J. 2019, 372, 373–382; https://doi.org/10.1016/j.cej.2019.04.142.Suche in Google Scholar
56. Cao, M.; Fan, S.; Qiu, H.; Su, D.; Li, L.; Su, J. CB Nanoparticles Optimized 3D Wearable Graphene Multifunctional Piezoresistive Sensor Framed by Loofah Sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547; https://doi.org/10.1021/acsami.0c09813.Suche in Google Scholar PubMed
57. Zhai, Y.; Yu, Y.; Zhou, K.; Yun, Z.; Huang, W.; Liu, H.; Xia, Q.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. Flexible and Wearable Carbon Black/Thermoplastic Polyurethane Foam with a Pinnate-Veined Aligned Porous Structure for Multifunctional Piezoresistive Sensors. Chem. Eng. J. 2020, 382, 122985; https://doi.org/10.1016/j.cej.2019.122985.Suche in Google Scholar
58. Yang, Y. P.; Kong, L. L.; Lu, J. J.; Lin, B. F.; Fu, L. H.; Xu, C. H. A Highly Conductive MXene-Based Rubber Composite with Relatively Stable Conductivity under Small Deformation and High Sensing Sensitivity at Large Strain. Compos. Part A. 2023, 170, 107545; https://doi.org/10.1016/j.compositesa.2023.107545.Suche in Google Scholar
59. Taromsari, S. M.; Shi, H. T. H.; Saadatnia, Z.; Park, C. B.; Naguib, H. E. Design and Development of Ultra-sensitive, Dynamically Stable, Multi-modal GnP@MXene Nanohybrid Electrospun Strain Sensors. Chem. Eng. J. 2022, 442, 136138.10.1016/j.cej.2022.136138Suche in Google Scholar
60. Zhang, L.; Zhang, X. Y.; Zhang, H. Y.; Xu, L. Q.; Wang, D.; Lu, X. Y.; Zhang, A. M. Semi-embedded Robust MXene/AgNW Sensor with Self-Healing, High Sensitivity and a Wide Range for Motion Detection. Chem. Eng. J. 2022, 434, 134751; https://doi.org/10.1016/j.cej.2022.134751.Suche in Google Scholar
61. Li, X. X.; Yang, J. Z.; Yuan, W. J.; Ji, P. G.; Xu, Z. B.; Shi, S. N.; Han, X. J.; Niu, W. X.; Yin, F. Microstructured MXene/Polyurethane Fibrous Membrane for Highly Sensitive Strain Sensing with Ultra-wide and Tunable Sensing Range. Compos. Commun. 2021, 23, 100586; https://doi.org/10.1016/j.coco.2020.100586.Suche in Google Scholar
62. Miao, C. J.; Cui, X. Y.; Sun, J. C.; Lu, S. W.; Liu, X. M. High Flexibility and Wide Sensing Range Human Health Monitoring Sensors Based on Ti3C2Tx MXene/CNTs/WPU/CNFs Composite Ink Film. Mater. Sci. Semicond. Process. 2023, 158, 107384; https://doi.org/10.1016/j.mssp.2023.107384.Suche in Google Scholar
63. Jian, M. Q.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27, 1606066; https://doi.org/10.1002/adfm.201606066.Suche in Google Scholar
64. Nie, Z.; Peng, K. L.; Lin, L. Z.; Yang, J. Y.; Cheng, Z. K.; Gan, Q.; Chen, Y.; Feng, C. G. A Conductive Hydrogel Based on Nature Polymer Agar with Self-Healingability and Stretchability for Flexible Sensors. Chem. Eng. J. 2023, 454, 139843; https://doi.org/10.1016/j.cej.2022.139843.Suche in Google Scholar
65. Peng, Z. Q.; Zhang, X. D.; Zhao, C. M.; Gan, C. S.; Zhu, C. H. Hydrophobic and Stable MXene/Reduced Graphene Oxide/polymer Hybrid Materials Pressure Sensors with an Ultrahigh Sensitive and Rapid Response Speed Pressure Sensor for Health Monitoring. Mater. Chem. Phys. 2021, 271, 124729; https://doi.org/10.1016/j.matchemphys.2021.124729.Suche in Google Scholar
66. Qi, Z. L.; Zhang, T. W.; Zhang, X. D.; Xu, Q.; Cao, K.; Chen, R. MXene-based Flexible Pressure Sensor with Piezoresistive Properties Significantly Enhanced by Atomic Layer Infiltration. Nano Mater. Sci. 2023, 5 (4), 4439–4446; https://doi.org/10.1016/j.nanoms.2022.10.003.Suche in Google Scholar
67. Lin, C. H.; Luo, S. H.; Meng, F. C.; Xu, B.; Long, T.; Zhao, Y. X.; Hu, H. B.; Zheng, L. X.; Liao, K.; Liu, J. H. MXene/Air-Laid Paper Composite Sensors for Both Tensile and Torsional Deformations Detection. Compos. Commun. 2021, 25, 100768; https://doi.org/10.1016/j.coco.2021.100768.Suche in Google Scholar
68. Bu, Y. B.; Shen, T. Y.; Yang, W. K.; Yang, S. Y.; Zhao, Y.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Ultrasensitive Strain Sensor Based on Superhydrophobic Microcracked Conductive Ti3C2Tx MXene/Paper for Human-Motion Monitoring and E-Skin. Sci. Bull. 2021, 66, 1849–1857; https://doi.org/10.1016/j.scib.2021.04.041.Suche in Google Scholar PubMed
69. Chen, Y. X.; Fu, X. L.; Jiang, Y.; Feng, W. Q.; Yu, D.; Wang, W. Highly Sensitive and Durable MXene/SBS Nanofiber-Based Multifunctional Sensors via Thiol-Ene Click Chemistry. Chem. Eng. J. 2023, 467, 143408; https://doi.org/10.1016/j.cej.2023.143408.Suche in Google Scholar
70. Cheng, Y. F.; Xie, Y. M.; Cao, H. H.; Li, L.; Liu, Z. Y.; Yan, S. W.; Ma, Y. N.; Liu, W. J.; Yue, Y.; Wang, J. B.; Gao, Y. H.; Li, L. Y. High-strength MXene Sheets through Interlayer Hydrogen Bonding for Self-Healing Flexible Pressure Sensor. Chem. Eng. J. 2023, 453, 139823; https://doi.org/10.1016/j.cej.2022.139823.Suche in Google Scholar
71. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/Cotton Fabric-Based Pressure Sensor with Both High Sensitivity and Wide Sensing Range for Human Motion Detection and E-Skin. Chem. Eng. J. 2021, 420, 127720; https://doi.org/10.1016/j.cej.2020.127720.Suche in Google Scholar
72. Yuan, L.; Zhang, M.; Zhao, T. T.; Li, T. K.; Zhang, H.; Chen, L. L.; Zhan, J. H. Flexible and Breathable Strain Sensor with High Performance Based on MXene/Nylon Fabric Network. Sens. Actuat. A 2020, 315, 112192; https://doi.org/10.1016/j.sna.2020.112192.Suche in Google Scholar
73. Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs Based Flexible Electronic Textile with Excellent Strain Sensing, Electromagnetic Interference Shielding and Joule Heating Performances. Chem. Eng. J. 2022, 438, 135587; https://doi.org/10.1016/j.cej.2022.135587.Suche in Google Scholar
74. Xu, H.; Wang, D. Y.; Zheng, Y. Q.; Liu, L. C.; Wang, X. B.; Han, W.; Wang, L. L. Egg Shell-Inspired High-Deformation MXene Biocomposite for Flexible Device. Microelectron. Eng. 2022, 264, 111869; https://doi.org/10.1016/j.mee.2022.111869.Suche in Google Scholar
75. Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13 (8), 8491–8494; https://doi.org/10.1021/acsnano.9b06394.Suche in Google Scholar PubMed
76. Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-Graphene Composite Films for Wearable Strain Sensors Featured with High Sensitivity and Large Range of Linear Response. Nano Energy 2019, 66, 104134; https://doi.org/10.1016/j.nanoen.2019.104134.Suche in Google Scholar
77. Li, L.; Cheng, Y. F.; Cao, H. H.; Liang, Z. S.; Liu, Z. Y.; Yan, S. W.; Li, L. Y.; Jia, S. F.; Wang, J. B.; Gao, Y. H. MXene/rGO/PS Spheres Multiple Physical Networks as High-Performance Pressure Sensor. Nano Energy 2022, 95, 106986; https://doi.org/10.1016/j.nanoen.2022.106986.Suche in Google Scholar
78. Chang, K. Q.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Compressible and Robust PANI Sponge Anchored with Erected MXene Flakes for Human Motion Detection. Compos. Part A. 2021, 151, 106671; https://doi.org/10.1016/j.compositesa.2021.106671.Suche in Google Scholar
79. Song, D. K.; Zeng, M. J.; Min, P.; Jia, X. Q.; Gao, F. L.; Yu, Z. Z.; Li, X. F. Electrically Conductive and Highly Compressible Anisotropic MXene-Wood Sponges for Multifunctional and Integrated Wearable Devices. J Mater. Sci. Technol. 2023, 144, 102–110; https://doi.org/10.1016/j.jmst.2022.09.050.Suche in Google Scholar
80. Chen, Y. X.; Jiang, Y.; Feng, W. Q.; Wang, W.; Yu, D. Construction of Sensitive Strain Sensing Nanofibrous Membrane with Polydopamine-Modified MXene/CNT Dual Conductive Network. Colloid. Surface A. 2022, 635, 128055; https://doi.org/10.1016/j.colsurfa.2021.128055.Suche in Google Scholar
81. Sharifuzzaman, M.; Chhetry, A.; Zahed, M. A.; Yoon, S. H.; Park, C. I.; Zhang, S. P.; Barman, S. C.; Sharma, S.; Yoon, H.; Yeong, J. Park Smart Bandage with Integrated Multifunctional Sensors Based on MXene-Functionalized Porous Graphene Scaffold for Chronic Wound Care Management. Biosens. Bioelectron. 2020, 169, 112637; https://doi.org/10.1016/j.bios.2020.112637.Suche in Google Scholar PubMed
82. Xu, B. B.; Ye, F.; Chen, R. H.; Luo, X. G.; Chang, G. T.; Li, R. X. A Wide Sensing Range and High Sensitivity Flexible Strain Sensor Based on Carbon Nanotubes and MXene. Ceram. Int. 2022, 48, 10220; https://doi.org/10.1016/j.ceramint.2021.12.235.Suche in Google Scholar
83. Wu, L.; Xu, C.; Fan, M. S.; Tang, P.; Zhang, R.; Yang, S. T.; Pan, L. J.; Bin, Y. Z. Lotus Root Structure-Inspired Ti3C2-MXene-Based Flexible and Wearable Strain Sensor with Ultra-high Sensitivity and Wide Sensing Range. Compos. Part A. 2022, 152, 106702; https://doi.org/10.1016/j.compositesa.2021.106702.Suche in Google Scholar
84. Yang, Z. P.; Li, H. Q.; Zhang, S. F.; Lai, X. J.; Zeng, X. R. Superhydrophobic MXene@ Carboxylated Carbon Nanotubes/carboxymethyl Chitosan Aerogel for Piezoresistive Pressure Sensor. Chem. Eng. J. 2021, 425, 130462; https://doi.org/10.1016/j.cej.2021.130462.Suche in Google Scholar
85. Yu, C. X.; Xu, J. W.; Yang, L.; Ye, M.; Ye, Y. S.; Li, T. L.; Zhang, Y. M.; Zhang, Z. W.; Xu, H. R.; Tan, H.; Zhang, G. Z.; Zhang, H. B. Self-driving Flexible Piezoresisti Ve Sensors Integrated with Enhanced Energy Harvesting Sensor of ZnO/Ti3C2Tx Nanocomposite Based on 3D Structure. J. Alloys Compd. 2023, 956, 170358; https://doi.org/10.1016/j.jallcom.2023.170358.Suche in Google Scholar
86. Shekh, M.; Zhu, G. M.; Xiong, W.; Wu, W. L.; Stadler, F.; Patel, D.; Zhu, C. T. Dynamically Bonded, Tough, and Conductive MXene@oxidized Sodium Alginate: Chitosan Based Multi-Networked Elastomeric Hydrogels for Physical Motion Detection. Int. J. Biol. Macromol. 2023, 224, 604–620; https://doi.org/10.1016/j.ijbiomac.2022.10.150.Suche in Google Scholar PubMed
87. Wang, S.; Du, X. S.; Luo, Y. F.; Lin, S. Y.; Zhou, M.; Du, Z. L.; Cheng, X.; Wang, H. B. Hierarchical Design of Waterproof, Highly Sensitive, and Wearable Sensing Electronics Based on MXene-Reinforced Durable Cotton Fabrics. Chem. Eng. J. 2021, 408, 127363; https://doi.org/10.1016/j.cej.2020.127363.Suche in Google Scholar
88. Xie, M. H.; Li, S. X.; Qi, X. M.; Chi, Z. Y.; Shen, L. T.; Islam, Z.; Dong, Y. B. Thermal and Infrared Light Self-Repairing, High Sensitivity, and Large Strain Sensing Range Shape Memory MXene/CNTs/EVA Composites Fiber Strain Sensor for Human Motion Monitoring. Sens. Actuator A. Phys. 2022, 347, 113939; https://doi.org/10.1016/j.sna.2022.113939.Suche in Google Scholar
89. Yang, M.; Yang, Z. J.; Lv, C.; Wang, Z.; Lu, Z.; Lu, G. Y.; Jia, X. T.; Wang, C. Electrospun Bifunctional MXene-Based Electronic Skins with High Performance Electromagnetic Shielding and Pressure Sensing. Compos. Sci. Technol. 2022, 221, 109313; https://doi.org/10.1016/j.compscitech.2022.109313.Suche in Google Scholar
90. Jia, G. W.; Zheng, A.; Wang, X.; Zhang, L.; Li, L.; Li, C. X.; Zhang, Y.; Cao, L. Y. Flexible, Biocompatible and Highly Conductive MXene-Graphene Oxide Film for Smart Actuator and Humidity Sensor. Sens. Actuators B Chem. 2021, 346, 130507; https://doi.org/10.1016/j.snb.2021.130507.Suche in Google Scholar
91. Zhang, L.; Lu, Y.; Lu, S. W.; Zhang, H.; Zhao, Z. P.; Ma, C. K.; Ma, K. M.; Wang, X. Q. Lifetime Health Monitoring of Fiber Reinforced Composites Using Highly Flexible and Sensitive MXene/CNT Film Sensor. Sens. Actuators A Phys. 2021, 332, 113148; https://doi.org/10.1016/j.sna.2021.113148.Suche in Google Scholar
92. Pu, J. H.; Zhao, X.; Zha, X. J.; Li, W. D.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. A Strain Localization Directed Crack Control Strategy for Designing MXene-Based Customizable Sensitivity and Sensing Range Strain Sensors for Full-Range Human Motion Monitoring. Nano Energy 2020, 74, 104814; https://doi.org/10.1016/j.nanoen.2020.104814.Suche in Google Scholar
93. Li, X.; Lu, Y. L.; Shi, Z. H.; Liu, G.; Xu, G.; An, Z. J.; Xing, H.; Chen, Q. M.; Han, R. P. S.; Liu, Q. J. Onion-inspired MXene/chitosan-Quercetin Multilayers: Enhanced Response to H2O Molecules for Wearable Human Physiological Monitoring. Sens. Actuators B. Chem. 2021, 329, 129209; https://doi.org/10.1016/j.snb.2020.129209.Suche in Google Scholar
94. Jia, Z. X.; Li, Z. J.; Ma, S. F.; Zhang, W. Q.; Chen, Y. J.; Luo, Y. F.; Jia, D. M.; Zhong, B. C.; Razal, J. M.; Wang, X. G.; Kong, L. X. Constructing Conductive Titanium Carbide Nanosheet (MXene) Network on Polyurethane/Polyacrylonitrile Fibre Framework for Flexible Strain Sensor. J. Colloid Interface Sci. 2021, 584, 1–10; https://doi.org/10.1016/j.jcis.2020.09.035.Suche in Google Scholar PubMed
95. Wang, Z.; Liu, Y. T.; Zhang, D. J.; Zhang, K. M.; Gao, C. H.; Wu, Y. M. Tough, Stretchable and Self-Healing C-MXenes/PDMS Conductive Composites as Sensitive Strain Sensors. Compos. Sci. Technol. 2021, 216, 109042; https://doi.org/10.1016/j.compscitech.2021.109042.Suche in Google Scholar
96. Qin, M.; Yuan, W. F.; Zhang, X. M.; Cheng, Y. Z.; Xu, M. J.; Wei, Y.; Chen, W. Y.; Huang, D. Preparation of PAA/PAM/MXene/TA Hydrogel with Antioxidant, Healable Ability as Strain Sensor. Colloids. Surf. B. 2022, 214, 112482; https://doi.org/10.1016/j.colsurfb.2022.112482.Suche in Google Scholar PubMed
97. Qin, R. Z.; Li, X.; Hu, M. J.; Shan, G. G.; Seeram, R.; Yin, M. Preparation of High-Performance MXene/PVA-Based Flexible Pressure Sensors with Adjustable Sensitivity and Sensing Range. Sens. Actuator A Phys. 2022, 338, 113458; https://doi.org/10.1016/j.sna.2022.113458.Suche in Google Scholar
98. Chen, Q.; Gao, Q. S.; Wang, X.; Schubert, D. W.; Liu, X. H. Flexible, Conductive, and Anisotropic Thermoplastic Polyurethane/Polydopamine/MXene Foam for Piezoresistive Sensors and Motion Monitoring. Compos. Part A. 2022, 155, 106838; https://doi.org/10.1016/j.compositesa.2022.106838.Suche in Google Scholar
99. Jiang, X. W.; Ma, K. M.; Lu, S. W.; Zhang, L.; Wang, Z.; Guo, Y. L.; Wang, X. Q.; Zhao, Z. P.; Qu, X. Q.; Lu, Y. Structure Bolt Tightening Force and Loosening Monitoring by Conductive MXene/FPC Pressure Sensor with High Sensitivity and Wide Sensing Range. Sens. Actuator A. 2021, 331, 113005; https://doi.org/10.1016/j.sna.2021.113005.Suche in Google Scholar
100. Chao, M. Y.; Wang, Y. G.; Ma, D.; Wu, X. X.; Zhang, W. X.; Zhang, L. Q.; Wan, P. B. Wearable MXene Nanocomposites-Based Strain Sensor with Tile-like Stacked Hierarchical Microstructure for Broad-Range Ultrasensitive Sensing. Nano Energy 2020, 78, 105187; https://doi.org/10.1016/j.nanoen.2020.105187.Suche in Google Scholar
101. Ma, Z.; Ma, K. M.; Lu, S. W.; Wang, S.; Liu, X. M.; Li, B. H.; Zhang, L.; Wang, X. Q. Flexible Ti3C2Tx MXene/ink Human Wearable Strain Sensors with High Sensitivity and a Wide Sensing Range. Sens. Actuator A. 2020, 315, 112304; https://doi.org/10.1016/j.sna.2020.112304.Suche in Google Scholar
102. Wang, S.; Shao, H. Q.; Liu, Y.; Tang, C. Y.; Zhao, X.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. Boosting Piezoelectric Response of PVDF-TrFE via MXene for Self-POWERED Linear Pressure Sensor. Compos. Sci. Technol. 2021, 202, 108600; https://doi.org/10.1016/j.compscitech.2020.108600.Suche in Google Scholar
103. Chen, B. D.; Zhang, L.; Li, H. Q.; Lai, X. J.; Zeng, X. R. Skin-inspired Flexible and High-Performance MXene@polydimethylsiloxane Piezoresistive Pressure Sensor for Human Motion Detection. J. Colloid Interface Sci. 2022, 617, 478–488; https://doi.org/10.1016/j.jcis.2022.03.013.Suche in Google Scholar PubMed
104. He, Y.; Deng, Z. P.; Wang, Y. J.; Zhao, Y. P.; Chen, L. Polysaccharide/Ti3C2Tx MXene Adhesive Hydrogels with Self-Healing Ability for Multifunctional and Sensitive Sensors. Carbohydr. Polym. 2022, 291, 119572; https://doi.org/10.1016/j.carbpol.2022.119572.Suche in Google Scholar PubMed
105. Yang, Y. C.; Song, W. M.; Murugesan, B.; Cheng, X. W.; Jiang, M. M.; Chen, Z.; Yan, B. F.; Cai, Y. R. Oriented Ti3C2Tx MXene-Doped Silk Fibroin/hyaluronic Acid Hydrogels for Sensitive Compression Strain Monitoring with a Wide Resilience Range and High Cycling Stability. Colloid Surface. A. 2023, 665, 131221; https://doi.org/10.1016/j.colsurfa.2023.131221.Suche in Google Scholar
106. Chen, T. D.; Yang, G. C.; Li, Y. Y.; Li, Z. P.; Ma, L. M.; Yang, S. R.; Wang, J. Q. Temperature-adaptable Pressure Sensors Based on MXene-Coated GO Hierarchical Aerogels with Superb Detection Capability. Carbon 2022, 200, 47–55; https://doi.org/10.1016/j.carbon.2022.08.002.Suche in Google Scholar
107. Qin, Z.; Chen, X. Y.; Lv, Y. H.; Zhao, B.; Fang, X. H.; Pan, K. Wearable and High-Performance Piezoresistive Sensor Based on Nanofiber/sodium Alginate Synergistically Enhanced MXene Composite Aerogel. Chem. Eng. J. 2023, 451, 138586; https://doi.org/10.1016/j.cej.2022.138586.Suche in Google Scholar
108. Li, W. W.; Fan, Q.; Chai, C. X.; Chu, Y. R.; Hao, J. C. Ti3C2-MXene Ion-Gel with Long-Term Stability and High Sensitivity for Wearable Piezoresistive Sensors. Colloid Surface. A 2023, 665, 131202; https://doi.org/10.1016/j.colsurfa.2023.131202.Suche in Google Scholar
109. Cheng, H. N.; Yang, C.; Chu, J. Y.; Zhou, H. S.; Wang, C. X. Multifunctional Ti3C2Tx MXene/nanospheres/Ti3C2Tx MXene/Thermoplastic Polyurethane Electrospinning Membrane Inspired by Bean Pod Structure for EMI Shielding and Pressure Sensing. Sens. Actuator A. Phys. 2023, 353, 114226; https://doi.org/10.1016/j.sna.2023.114226.Suche in Google Scholar
110. Zheng, X. H.; Wang, P.; Zhang, X. S.; Hu, Q. L.; Wang, Z. Q.; Nie, W. Q.; Zou, L. H.; Li, C. L.; Han, X. Breathable, Durable and Bark -shaped MXene/Textiles for High-Performance Wearable Pressure Sensors, EMI Shielding and Heat Physiotherapy. Compos. Part A. 2022, 152, 106700; https://doi.org/10.1016/j.compositesa.2021.106700.Suche in Google Scholar
111. Li, X. X.; Yang, M.; Qin, W. J.; Gu, C. S.; Feng, L.; Tian, Z. H.; Qiao, H. Y.; Chen, J. J.; Chen, J. X.; Yin, S. G. MXene-based Multilayered Flexible Strain Sensor Integrating Electromagnetic Shielding and Joule Heat. Colloid. Surface A. 2023, 658, 130706; https://doi.org/10.1016/j.colsurfa.2022.130706.Suche in Google Scholar
112. Santos, A. D.; Pinela, N.; Alves, P.; Santos, R.; Fortunato, E.; Martins, R.; Aguas, H., Igreja´, R. Piezoresistive E-Skin Sensors Produced with Laser Engraved Molds. Adv. Electron. Mater. 2018, 4, 1–10.10.1002/aelm.201800182Suche in Google Scholar
113. Cao, Y.; Li, T.; Gu, Y.; Luo, H.; Wang, S.; Zhang, T. Fingerprint-inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture. Small 2018, 14, 1–9; https://doi.org/10.1002/smll.201703902.Suche in Google Scholar PubMed
114. Khalili, N.; Shen, X.; Naguib, H. E. An Interlocked Flexible Piezoresistive Sensor with 3D Micropyramidal Structures for Electronic Skin Applications. Soft Matter 2018, 14, 6912–6920; https://doi.org/10.1039/c8sm00897c.Suche in Google Scholar PubMed
115. Yan, J.; Ma, Y.; Jia, G.; Zhao, S.; Yue, Y.; Cheng, F.; Zhang, C.; Cao, M.; Xiong, Y.; Shen, P.; Gao, Y. Bionic MXene Based Hybrid Film Design for an Ultrasensitive Piezoresistive Pressure Sensor. Chem. Eng. J. 2022, 431, 133458; https://doi.org/10.1016/j.cej.2021.133458.Suche in Google Scholar
116. Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C. F. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors 2014, 14, 5296–5332; https://doi.org/10.3390/s140305296.Suche in Google Scholar PubMed PubMed Central
117. Thouti, E.; Nagaraju, A.; Chandran, A.; Prakash, P. V. B. S. S.; Shivanarayanamurthy, P.; Lal, B.; Kumar, P.; Kothari, P.; Panwar, D. Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-pyramids for Bio-Signal Monitoring. Sens. Actuators, A Phys. 2020, 314, 112251; https://doi.org/10.1016/j.sna.2020.112251.Suche in Google Scholar
118. Jung, Y.; Jung, K. K.; Kim, D. H.; Kwak, D. H.; Ahn, S.; Han, J. S.; Ko, J. S. Flexible and Highly Sensitive Three-axis Pressure Sensors Based on Carbon Nanotube/Polydimethylsiloxane Composite Pyramid Arrays. Sens. Actuators A Phys. 2021, 331, 113034; https://doi.org/10.1016/j.sna.2021.113034.Suche in Google Scholar
119. Li, G.; Chen, D.; Li, C.; Liu, W.; Liu, H. Engineered Microstructure Derived Hierarchical Deformation of Flexible Pressure Sensor Induces a Supersensitive Piezoresistive Property in Broad Pressure Range. Adv. Sci. 2020, 7, 1–10; https://doi.org/10.1002/advs.202000154.Suche in Google Scholar PubMed PubMed Central
120. Zhang, J.; Zhou, L. J.; Zhang, H. M.; Zhao, Z. X.; Dong, S. L.; Wei, S.; Zhao, J.; Wang, Z. L.; Guo, B.; Hu, P. A. Highly Sensitive Flexible Three-axis Tactile Sensors Based on the Interface Contact Resistance of Microstructured Graphene. Nanoscale 2018, 10, 7387–7395; https://doi.org/10.1039/c7nr09149d.Suche in Google Scholar PubMed
121. Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220; https://doi.org/10.1021/acsami.0c22938.Suche in Google Scholar PubMed
122. Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim, D. H.; Chung, Y.; Cho, K. Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array. Adv. Mater. 2016, 28 (26), 5300–5306; https://doi.org/10.1002/adma.201600408.Suche in Google Scholar PubMed
123. Lin, L. Y.; Wang, X. Q.; Yang, B.; Zhang, L.; Zhao, Z. P.; Qu, X. Q.; Lu, Y.; Jiang, X. W.; Lu, S. W. Condition Monitoring of Composite Overwrap Pressure Vessels Based on Buckypaper Sensor and MXene Sensor. Compos. Commun. 2021, 25, 100699; https://doi.org/10.1016/j.coco.2021.100699.Suche in Google Scholar
124. Fan, Q.; Yi, M. J.; Chai, C. X.; Li, W. W.; Qi, P.; Wang, J. H.; Hao, J. C. Oxidation Stability Enhanced MXene-Based Porous Materials Derived from Water-In-Ionic Liquid Pickering Emulsions for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. J. Colloid Interface Sci. 2022, 618, 311–321; https://doi.org/10.1016/j.jcis.2022.03.073.Suche in Google Scholar PubMed
125. Ge, Y. H.; Zeng, J. X.; Hu, B.; Yang, D. Y.; Shao, Y. Z.; Lu, H. B. Bioinspired Flexible Film as Intelligent Moisture-Responsive, Actuators and Noncontact Sensors. Giant 2022, 11, 100107; https://doi.org/10.1016/j.giant.2022.100107.Suche in Google Scholar
126. Chao, M. Y.; Di, P. J.; Yuan, Y.; Xu, Y. J.; Zhang, L. Q.; Wan, P. B. Flexible Breathable Photothermal-Therapy Epidermic Sensor with MXene for Ultrasensitive Wearable Human-Machine Interaction. Nano Energy 2023, 108, 108201; https://doi.org/10.1016/j.nanoen.2023.108201.Suche in Google Scholar
127. Wang, Y. L.; Qin, W. J.; Hu, X. Y.; Liu, Z. S.; Ren, Z. X.; Cao, H. Q.; An, B. G.; Zhou, X.; Shafiq, M.; Yin, S. G.; Liu, Z. F. Hierarchically Buckled Ti3C2Tx MXene/carbon Nanotubes Strain Sensor with Improved Linearity, Sensitivity, and Strain Range for Soft Robotics and Epidermal Monitoring. Sens. Actuators B Chem. 2022, 368, 132228; https://doi.org/10.1016/j.snb.2022.132228.Suche in Google Scholar
128. Zhang, L.; Qu, X. Q.; Lu, S. W.; Wang, X. Q.; Lin, L. Y.; Zhao, Z. P.; Lu, Y.; Ma, C. K. Temperature and Strain Monitor of COPV by Buckypaper and MXene Sensor Combined Flexible Printed Circuit. Int. J Hydrogen Energ. 2022, 47, 4211–4221; https://doi.org/10.1016/j.ijhydene.2021.10.242.Suche in Google Scholar
129. Wang, H. B.; Xiang, J.; Wen, X.; Du, X. S.; Wang, Y.; Du, Z. L.; Cheng, X.; Wang, S. Multifunctional Skin-Inspired Resilient MXene-Embedded Nanocomposite Hydrogels for Wireless Wearable Electronics. Compos. Part A. 2022, 155, 106835; https://doi.org/10.1016/j.compositesa.2022.106835.Suche in Google Scholar
130. Fu, W. L.; Wang, Q.; Liu, H.; Cao, J. M.; Xu, J. Y.; Yuan, X. G.; Zhang, Y. A.; Ren, X. M. Highly Stretchable and Conductive MXene/Polyurethane Composite Film coated on Various Flexible Substrates for Ultrasensitive Strain Sensors. Mater. Lett. 2022, 320, 132328; https://doi.org/10.1016/j.matlet.2022.132328.Suche in Google Scholar
131. Wang, J.; Dai, T. Y.; Zhou, Y. C.; Mohamed, A.; Yuan, G. L.; Jia, H. B. Adhesive and High-Sensitivity Modified Ti3C2TX (MXene)-Based Organo Hydrogels with Wide Work Temperature Range for Wearable Sensors. J. Colloid Interface Sci. 2022, 613, 94–102; https://doi.org/10.1016/j.jcis.2022.01.021.Suche in Google Scholar PubMed
132. Zhang, Z. N.; Weng, L.; Guo, K.; Guan, L. Z.; Wang, X. M.; Wu, Z. J. Durable and Highly Sensitive Flexible Sensors for Wearable Electronic Devices with PDMS-MXene/TPU Composite Films. Ceram. Int. 2022, 48, 4977–4985; https://doi.org/10.1016/j.ceramint.2021.11.035.Suche in Google Scholar
133. Ma, J. L.; Yang, K.; Jiang, Y.; Shen, L. X.; Ma, H. T.; Cui, Z. W.; Du, Y. H.; Lin, J. B.; Liu, J. S.; Zhu, N. Integrating MXene Waste Materials into Value Added Products for Smart Wearable Self-Powered Healthcare Monitoring. Cell Rep. Phys. Sci. 2022, 3, 100908; https://doi.org/10.1016/j.xcrp.2022.100908.Suche in Google Scholar
134. Huang, C.; Luo, Q.; Miao, Q. Q.; He, Z. J.; Fan, P.; Chen, Y. H.; Zhang, Q.; He, X.; Li, L.; Liu, X. G. MXene-based Double-Network Organohydrogel with Excellent Stretchability, High Toughness, Anti-drying and Wide Sensing Linearity for Strain Sensor. Polymer 2022, 253, 124993; https://doi.org/10.1016/j.polymer.2022.124993.Suche in Google Scholar
135. Shu, J.; Gao, L.; Li, Y.; Wang, P. W.; Deng, X. Y.; Yan, X. W.; Qu, K. G.; Li, L. MXene/Tissue Paper Composites for Wearable Pressure Sensors and Thermotherapy Electronics. Thin Solid Films 2022, 743, 139054; https://doi.org/10.1016/j.tsf.2021.139054.Suche in Google Scholar
136. Geng, L. H.; Liu, W.; Fan, B. B.; Wu, J. M.; Shi, S.; Huang, A.; Hu, J. L.; Peng, X. F. Anisotropic Double-Network Hydrogels Integrated Superior Performance of Strength, Toughness and Conductivity for Flexible Multi-Functional Sensors. Chem. Eng. J. 2023, 462, 142226; https://doi.org/10.1016/j.cej.2023.142226.Suche in Google Scholar
137. Yang, M. Y.; Huang, M. L.; Li, Y. Z.; Feng, Z. S.; Huang, Y.; Chen, H. J.; Xu, Z. Q.; Liu, H. G.; Wang, Y. Printing Assembly of Flexible Devices with Oxidation Stable MXene for High Performance Humidity Sensing Applications. Sens. Actuators B Chem. 2022, 364, 131867; https://doi.org/10.1016/j.snb.2022.131867.Suche in Google Scholar
138. Guan, M.; Liu, Y.; Du, H.; Long, Y. Y.; An, X. Y.; Liu, H. B.; Cheng, B. W. Durable, Breathable, Sweat-Resistant, and Degradable Flexible Sensors for Human Motion Detection. Chem. Eng. J. 2023, 462, 142151; https://doi.org/10.1016/j.cej.2023.142151.Suche in Google Scholar
139. Wang, X. M.; Wang, X. L.; Yin, J. J.; Li, N.; Zhang, Z. L.; Xu, Y. W.; Zhang, L. X.; Qin, Z. H.; Jiao, T. F. Mechanically Robust, Degradable and Conductive MXene-Composited Gelatin Organohydrogel with Environmental Stability and Self-Adhesiveness for Multifunctional Sensor. Compos. Part B. 2022, 241, 110052; https://doi.org/10.1016/j.compositesb.2022.110052.Suche in Google Scholar
140. Ye, C. N.; Yan, F.; Lan, X. H.; Rudolf, P.; Voet, V. S. D.; Folkersma, R.; Loos, K. Novel MXene Sensors Based on Fast Healing Vitrimers. Appl. Mater. Today 2022, 29, 101683; https://doi.org/10.1016/j.apmt.2022.101683.Suche in Google Scholar
141. Shi, Z. H.; Dai, C. B.; Deng, P. X.; Li, X.; Wu, Y.; Lv, J. J.; Xiong, C. H.; Shuai, Y. F.; Zhang, F. N.; Wang, D.; Liang, H.; He, Y.; Chen, Q. M.; Lu, Y. L.; Liu, Q. J. Wearable Battery-free Smart Bandage with Peptide Functionalized Biosensors Based on MXene for Bacterial Wound Infection Detection. Sens. Actuators B. Chem. 2023, 383, 133598; https://doi.org/10.1016/j.snb.2023.133598.Suche in Google Scholar
142. Han, M. M.; Shen, W. H. Nacre-inspired Cellulose nanofiber/MXene Flexible Composite Film with Mechanical Robustness for Humidity Sensing. Carbohydr. Polym. 2022, 298, 120109; https://doi.org/10.1016/j.carbpol.2022.120109.Suche in Google Scholar PubMed
143. Zhao, H. J.; Chen, H. Z.; Yang, M. J.; Li, Y. Facile Fabrication of Poly (Diallyldimethyl Ammonium chloride)/Ti3C2Tx/Poly (Vinylidene Fluoride) 3D Hollow Fiber Membrane Flexible Humidity Sensor and its Application in the Monitoring of Health-Related Physiological Activity. Sens. Actuators B. Chem. 2023, 374, 132773; https://doi.org/10.1016/j.snb.2022.132773.Suche in Google Scholar
144. Liu, Y. C. Y.; Sheng, Z.; Huang, J. L.; Liu, W. Y.; Ding, H. Y.; Peng, J. F.; Zhong, B.; Sun, Y. H.; Ouyang, X. P.; Cheng, H. Y.; Wang, X. F. Moisture-resistant MXene-Sodium Alginate Sponges with Sustained Super Hydrophobicity for Monitoring Human Activities. Chem. Eng. J. 2022, 432, 134370; https://doi.org/10.1016/j.cej.2021.134370.Suche in Google Scholar PubMed PubMed Central
145. Sun, G. F.; Wang, P.; Jiang, Y. X.; Sun, H. C.; Liu, T.; Li, G. X.; Yu, W.; Meng, C. Z.; Guo, S. J. Bioinspired Flexible, Breathable, Waterproof and Self-Cleaning Iontronic Tactile Sensors for Special Underwater Sensing Applications. Nano Energy 2023, 110, 108367; https://doi.org/10.1016/j.nanoen.2023.108367.Suche in Google Scholar
146. He, J. M.; Shi, F.; Liu, Q. H.; Pang, Y. J.; He, D.; Sun, W. C.; Peng, L.; Yang, J.; Qu, M. N. Wearable Superhydrophobic PPy/MXene Pressure Sensor Based on Cotton Fabric with Superior Sensitivity for Human Detection and Information Transmission. Colloid. Surface. A. 2022, 642, 128676; https://doi.org/10.1016/j.colsurfa.2022.128676.Suche in Google Scholar
147. Wang, Y.; Luo, Z. L.; Qian, Y. Q.; Zhang, W.; Chen, L. Z. Monolithic MXene Composites with Multi-Responsive Actuating and Energy-Storage Multi-Functions. Chem. Eng. J. 2023, 454, 140513; https://doi.org/10.1016/j.cej.2022.140513.Suche in Google Scholar
148. Wu, P. X.; Qin, Z. Y.; Dassanayake, R.; Sun, Z. C.; Cao, M. J.; Fu, K.; Zhou, Y.; Liu, Y. Y. Antimicrobial MXene-Based Conductive Alginate Hydrogels as Flexible Electronics. Chem. Eng. J. 2023, 455, 140546; https://doi.org/10.1016/j.cej.2022.140546.Suche in Google Scholar
149. Wang, D. Y.; Zhang, D. Z.; Tang, M. C.; Zhang, H.; Chen, F. J.; Wang, T.; Li, Z.; Zhao, P. P. Rotating Triboelectric-Electromagnetic Nanogenerator Driven by Tires for Self-Powered MXene-Based Flexible Wearable Electronics. Chem. Eng. J. 2022, 446, 136914; https://doi.org/10.1016/j.cej.2022.136914.Suche in Google Scholar
150. Chen, M. M.; Hu, X. Y.; Li, K.; Sun, J. K.; Liu, Z. J.; An, B. G.; Zhou, X.; Liu, Z. F. Self-assembly of Dendritic-Lamellar MXene/Carbon Nanotube Conductive Films for Wearable Tactile Sensors and Artificial Skin. Carbon 2020, 164, 111–120; https://doi.org/10.1016/j.carbon.2020.03.042.Suche in Google Scholar
151. Cui, T. R.; Qiao, Y. C.; Li, D.; Huang, X. R.; Yang, L.; Yan, A. Z.; Chen, Z. K.; Xu, J. D.; Tan, X. C.; Jian, J. M.; Li, Z.; Ji, S. R.; Liu, H. F.; Yang, Y.; Zhang, X. G.; Ren, T. L. Multifunctional, Breathable MXene-PU Mesh Electronic Skin for Wearable Intelligent 12-lead ECG Monitoring System. Chem. Eng. J. 2023, 455, 140690; https://doi.org/10.1016/j.cej.2022.140690.Suche in Google Scholar
152. Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable Polymer-Crosslinked 2D MXene-Based Flexible Biocompatible Electronic Skins for In Vivo Biomonitoring. Nano Energy 2021, 84, 105921; https://doi.org/10.1016/j.nanoen.2021.105921.Suche in Google Scholar
153. Pen, W. W.; Pan, X. R.; Liu, X. J.; Gao, Y.; Lu, T.; Li, J. B.; Xu, M.; Pan, L. K. A Moisture Self-Regenerative, Ultra-low Temperature Anti-freezing and Self-adhesive Polyvinyl alcohol/polyacrylamide/CaCl2/MXene Ionotronics Hydrogel for Bionic Skin Strain Sensor. J. Colloid Interface Sci. 2023, 634, 782–792; https://doi.org/10.1016/j.jcis.2022.12.101.Suche in Google Scholar PubMed
154. Le, V. T.; Vasseghian, Y.; Doan, V. D.; Nguyen, T. T. T.; Vo, T. T. T.; Do, H. H.; Vu, K. B.; Vu, Q. H.; Lam, T. D.; Tran, V. A. Flexible and High-Sensitivity Sensor Based on Ti3C2-MoS2 MXene Composite for the Detection of Toxic Gases. Chemosphere 2022, 291, 133025; https://doi.org/10.1016/j.chemosphere.2021.133025.Suche in Google Scholar PubMed
155. Xu, H.; Jiang, X. Y.; Yang, K. Y.; Ren, J. C.; Zhai, Y. H.; Han, X. S.; Cai, H. Z.; Gao, F. Conductive and Eco-Friendly gluten/MXene Composite Organohydrogels for Flexible, Adhesive, and Low-Temperature Tolerant Epidermal Strain Sensors. Colloid. Surface A. 2022, 636, 128182; https://doi.org/10.1016/j.colsurfa.2021.128182.Suche in Google Scholar
156. Li, R.; Tian, X. H.; Wei, M.; Dong, A. J.; Pan, X.; He, Y. L.; Song, X. Y.; Li, H. F. Flexible Pressure Sensor Based on Cigarette Filter and Highly Conductive MXene Sheets. Compos. Commun. 2021, 27, 100889; https://doi.org/10.1016/j.coco.2021.100889.Suche in Google Scholar
157. Huang, H. Z.; Dong, Y. D.; Wan, S.; Shen, J. X.; Li, C.; Han, L. X.; Dou, G. B.; Sun, L. T. A Transient Dual-type Sensor Based on MXene/cellulose Nanofibers Composite for Intelligent Sedentary and Sitting Postures Monitoring. Carbon 2022, 200, 327–336; https://doi.org/10.1016/j.carbon.2022.08.070.Suche in Google Scholar
158. Wang, D. Y.; Wang, L. L.; Lou, Z. G.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, Biocompatible and Robust Silk Fibroin-MXene Film with Stable 3D Cross-Link Structure for Flexible Pressure Sensors. Nano Energy 2020, 78, 105252; https://doi.org/10.1016/j.nanoen.2020.105252.Suche in Google Scholar
159. Yang, X.; Wu, F. X.; Xu, C. Y.; Yang, L. Y.; Yin, S. G. A Flexible High-Output Triboelectric Nanogenerator Based on MXene/CNT/PEDOT Hybrid Film for Self-Powered Wearable Sensors. J. Alloys Compd. 2022, 928, 167137; https://doi.org/10.1016/j.jallcom.2022.167137.Suche in Google Scholar
160. Chen, A.; Wang, C. Y.; Ali, O. A. A.; Mahmoud, S. F.; Shi, Y. T.; Ji, Y. X.; Algadi, H.; El-Bahy, S. M.; Huang, M.; Guo, Z. H.; Cui, D. P.; Wei, H. G. MXene@nitrogen-doped Ca Rbon Films for Supercapacitor and Piezoresistive Sensing Applications. Compos. Part A. 2022, 163, 107174.10.1016/j.compositesa.2022.107174Suche in Google Scholar
161. Fan, J. C.; Yuan, M. M.; Wang, L. B.; Xia, Q. X.; Zheng, H. W.; Zhou, A. G. MXene Supported by Cotton Fabric as Electrode Layer of Triboelectric Nanogenerators for Flexible Sensors. Nano Energy 2023, 105, 107973; https://doi.org/10.1016/j.nanoen.2022.107973.Suche in Google Scholar
162. Hazarika, A.; Deka, B. K.; Seo, J.; Jeong, H. E.; Park, Y. B.; Park, H. W. Porous Spongy FexCo1-xP Nanostructure and MXene Infused Self-Powered Flexible Textile Based Personal Thermoregulatory Device. Nano Energy 2021, 86, 106042; https://doi.org/10.1016/j.nanoen.2021.106042.Suche in Google Scholar
163. Zhang, Z. C.; Yan, Q. Y.; Liu, Z. R.; Zhao, X. Y.; Wang, Z.; Sun, J.; Wang, Z. L.; Wang, R. R.; Li, L. L. Flexible MXene Composed Triboelectric Nanogenerator via Facile Vacuum-Assistant Filtration Method for Self-Powered Biomechanical Sensing. Nano Energy 2021, 88, 106257; https://doi.org/10.1016/j.nanoen.2021.106257.Suche in Google Scholar
164. Rana, S. M. S.; Rahman, M. T.; Zahed, M. A.; Lee, S. H.; Shin, Y. D.; Seonu, S.; Kim, D.; Salauddin, M.; Bhatt, T.; Sharstha, K.; Park, J. Y. Zirconium Metal-Organic Framework and Hybridized Co-NPC@MXene Nanocomposite-Coated Fabric for Stretchable, Humidity-Resistant Triboelectric Nanogenerators and Self-Powered Tactile Sensors. Nano Energy 2022, 104, 107931; https://doi.org/10.1016/j.nanoen.2022.107931.Suche in Google Scholar
165. Rahman, M. T.; Rana, S. M. S.; Salauddin, M.; Zahed, M. A.; Lee, S.; Yoon, E. S.; Park, J. Y. Silicone-incorporated Nanoporous Cobalt Oxide and MXene Nanocomposite-Coated Stretchable Fabric for Wearable Triboelectric Nanogenerator and Self-Powered Sensing Applications. Nano Energy 2022, 100, 107454; https://doi.org/10.1016/j.nanoen.2022.107454.Suche in Google Scholar
166. Yi, Q.; Pei, X. C.; Das, P.; Qin, H. T.; Lee, S. W.; Esfandyarpour, R. A Self-Powered Triboelectric MXene-Based 3D-Printed Wearable Physiological Biosignal Sensing System for On-Demand, Wireless, and Real-Time Health Monitoring. Nano Energy 2022, 101, 107511; https://doi.org/10.1016/j.nanoen.2022.107511.Suche in Google Scholar
167. Li, X. P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H. B.; Koratkar, N.; Yu, Z. Z. Highly Sensitive, Reliable and Flexible Piezoresistive Pressure Sensors Featuring Polyurethane Sponge Coated with MXene Sheets. J. Colloid Interface Sci. 2019, 542, 54–62; https://doi.org/10.1016/j.jcis.2019.01.123.Suche in Google Scholar PubMed
168. Cai, Y. W.; Zhang, X. N.; Wang, G. G.; Li, G. Z.; Zhao, D. Q.; Sun, N.; Li, F.; Zhang, H. Y.; Han, J. C.; Yang, Y. A Flexible Ultra-sensitive tribo.Electric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 2021, 81, 105663; https://doi.org/10.1016/j.nanoen.2020.105663.Suche in Google Scholar
169. Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly Sensitive Self-Powered Pressure and Strain Sensor Based on Crumpled MXene Film for Wireless Human Motion Detection. Nano Energy 2022, 92, 106689; https://doi.org/10.1016/j.nanoen.2021.106689.Suche in Google Scholar
170. Irfan, M. S.; Ali, M. A.; Khan, T.; Anwer, S.; Liao, K.; Umer, R. MXene and Graphene Coated Multifunctional Fiber Reinforced Aerospace Composites with Sensing and EMI Shielding Abilities. Compos. Part A. 2023, 165, 107351; https://doi.org/10.1016/j.compositesa.2022.107351.Suche in Google Scholar
171. Li, Z. M.; Feng, D.; Li, B.; Xie, D. L.; Mei, Y. FDM Printed MXene/MnFe2O4/MWCNTs Reinforced TPU Composites with 3D Voronoi Structure for Sensor and Electromagnetic Shielding Applications. Compos. Sci. Technol. 2023, 231, 109803; https://doi.org/10.1016/j.compscitech.2022.109803.Suche in Google Scholar
172. Sindhu, B.; Adepu, V.; Sahatiya, P.; Nandi, S. An MXene Based Flexible Patch Antenna for Pressure and Level Sensing Applications. Flat Chem. 2022, 33, 100367; https://doi.org/10.1016/j.flatc.2022.100367.Suche in Google Scholar
173. Sang, M.; Liu, S.; Li, W. W.; Wang, S.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Flexible Polyvinylidene Fluoride (PVDF)/MXene (Ti3C2Tx)/Polyimide (PI) Wearable Electronic for Body Monitoring, Thermotherapy and Electromagnetic Interference Shielding. Compos. Part A. 2022, 153, 106727; https://doi.org/10.1016/j.compositesa.2021.106727.Suche in Google Scholar
174. Lu, C.; Yu, X. P.; Chen, Y. X.; Chen, X.; Zhang, X. H. Giant Piezoionic Effect of Ultrathin MXene Nanosheets toward Highly-Sensitive Sleep Apnea Diagnosis. Chem. Eng. J. 2023, 463, 142523; https://doi.org/10.1016/j.cej.2023.142523.Suche in Google Scholar
175 Guo, B. Y.; He, S. H.; Yao, M. M.; Tan, Z. Y.; Li, X.; Liu, M.; Yu, C. J.; Liang, L.; Zhao, Z. M.; Guo, Z. C.; Shi, M. Y.; Wei, Y. P.; Zhang, H.; Yao, F. L.; Li, J. J. MXene-Containing Anisotropic Hydrogels Strain Sensors with Enhanced Sensing Performance for Human Motion Monitoring and Wireless Transmission. Chem. Eng. J. 2023, 461, 142099; https://doi.org/10.1016/j.cej.2023.142099.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene