Home Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
Article
Licensed
Unlicensed Requires Authentication

Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene

  • Christian Hopmann and Jan Wolters EMAIL logo
Published/Copyright: August 28, 2024
Become an author with De Gruyter Brill

Abstract

The processing of long glass fibre-reinforced thermoplastics results in considerable fibre damage, particularly during plasticising. By using thermoplastic foam injection moulding (FIM) with a constant blowing agent atmosphere, fibre damage during plasticisation can be reduced. This can be attributed to the reduction of the melt viscosity on the one hand and the influence of the melting behaviour on the other. Therefore, the influence of the FIM and the process parameters on the fibre length and the fibre length distribution are analysed and compared with the influence of the process parameters on the melt viscosity.


Corresponding author: Jan Wolters, Institute for Plastics Processing in Industry and Craft at RWTH Aachen University, 52074 Aachen, Germany, E-mail:

Award Identifier / Grant number: 03LB3044E

Acknowledgements

The authors would like to thank all institutions and partners, in particular the companies Celanese and Bosch, for their excellent cooperation.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: The research project 03LB3044E of the Research Association for Plastics Processing is funded by the Federal Ministry of Economics and Climate Protection through the Technology Transfer Program Lightweight Construction (TTP Leichtbau) on the basis of a resolution of the German Bundestag.

  6. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Wierda, L.; Li, W.; Kemna, R. Ecodesign Impact Accounting Overview Report 2023; Annual Overview Report 2023 from European Union: Delft, NL, 2024.Search in Google Scholar

2. Altstädt, V.; Mantey, A. Thermoplast-Schaumspritzgießen; Hanser: München, 2011.10.3139/9783446425743Search in Google Scholar

3. Ning, H.; Lu, N.; Hassen, A. A.; Chawla, K.; Selim, M.; Pillay, S. A Review of Long Fibre-Reinforced Thermoplastic or Long Fibre Thermoplastic (LFT) Composites. Int. Mater. Rev. 2019, 65 (3). https://doi.org/10.1080/09506608.2019.1585004.Search in Google Scholar

4. Wang, M. L.; Chang, R. Y.; Hsu, C. H. Molding Simulation: Theory and Practice; Hanser: Munich, 2018.10.3139/9781569906200.fmSearch in Google Scholar

5. Thomason, J. L.; Vlug, M. A. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 1. Tensile and Flexural Modulus. Compos. Part A: Appl. Sci. Manuf. 1996, 27 (6), 477–484. https://doi.org/10.1016/1359-835X(95)00065-A.Search in Google Scholar

6. Thomason, J. L.; Vlug, M. A.; Schipper, G.; Krikor, H. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: Part 3. Strength and Strain at Failure. Compos. Part A: Appl. Sci. Manuf. 1996, 27 (11), 1075–1084. https://doi.org/10.1016/1359-835X(96)00066-8.Search in Google Scholar

7. Thomason, J. L.; Vlug, M. A. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 4. Impact Properties. Compos. Part A: Appl. Sci. Manuf. 1996, 28 (3), 277–288. https://doi.org/10.1016/S1359-835X(96)00127-3.Search in Google Scholar

8. Thomason, J. L.; Vlug, M. A. The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene: 5. Injection Moulded Long and Short Fibre PP. Compos. Part A: Appl. Sci. Manuf. 2002, 33 (12), 1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3.Search in Google Scholar

9. Thieltges, H. P. Faserschädigung Beim Spritzgießen Verstärkter Kunststoffe. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1991.Search in Google Scholar

10. Metten, M.; Cremer, M. Verfahrensparameter beeinflussen die Faserlänge: Langfaserverstärkte Thermoplaste spritzgießen. Kunststoffe 2000, 90 (1), 80–83.Search in Google Scholar

11. Inoue, A.; Morita, K.; Tanaka, T.; Arao, Y.; Sawada, Y. Effect of Screw Design on Fibre Breakage and Dispersion in Injection-Molded Long Glass-Fibre-Reinforced Polypropylene. J. Compos. Mater. 2015, 49 (1), 75–84. https://doi.org/10.1177/0021998313514872.Search in Google Scholar

12. Turkovich, R. V.; Erwin, L. Fibre Fracture in Reinforced Thermoplastic Processing. Polym. Eng. Sci. 1983, 23 (13), 743–756. https://doi.org/10.1002/pen.760231309.Search in Google Scholar

13. Mittal, R. K.; Gupta, V. B.; Sharma, P. K. Theoretical and Experimental Study of Fibre Attrition during Extrusion of Glass-Fibre-Reinforced Polypropylene. Compos. Sci. Technol. 1988, 31, 295–307. https://doi.org/10.1016/0266-3538(88)90035-8.Search in Google Scholar

14. Bechara, A.; Goris, S.; Yanev, A.; Brands, D.; Osswald, T. Novel Modeling Approach for Fibre Breakage during Molding of Long Fibre-Reinforced Thermoplastics. Phys. Fluids 2021, 33 (7). https://doi.org/10.1063/5.0058693.Search in Google Scholar

15. Roch, A. Leichtbaupotenzial langfaserverstärkter Thermoplaste (LFT) in Integralschaumbauweise hergestellt durch Schaumspritzgießen mit Dekompressionshub. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karlsruhe, 2015.Search in Google Scholar

16. Djalili-Moghaddam, M.; Toll, S. Fibre Suspension Rheology: Effect of Concentration, Aspect Ratio and Fibre Size. Rheol. Acta 2006, 45 (1), 315–320; https://doi.org/10.1007/s00397-005-0021-y.Search in Google Scholar

17. Thomasset, J.; Carreau, P.; Sanschagrin, B.; Ausias, G. Rheological Properties of Long Glass Fibre Filled Polypropylene. J. Non-Newtonian Fluid Mech. 2005, 125 (1), 25–34; https://doi.org/10.1016/j.jnnfm.2004.09.004.Search in Google Scholar

18. Kim, D. H.; Lee, Y. S.; Son, Y. Anomalous Rheological Behavior of Long Glass Fibre Reinforced Polypropylene. Korea-Australia Rheology J. 2012, 24 (4), 307–312; https://doi.org/10.1007/s13367-012-0037-7.Search in Google Scholar

19. Qin, X.; Thompson, M. R.; Hrymak, A. N.; Torres, A. Rheology Studies of Polyethylene/Chemical Blowing Agent Solutions within an Injection Molding Machine. Polym. Eng. Sci. 2005, 45 (8), 1108–1118; https://doi.org/10.1002/pen.20371.Search in Google Scholar

20. Pretel, G. U. Fließverhalten Treibmittelbeladener Polymerschmelzen. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2005.Search in Google Scholar

21. Traut, H.; Wobbe, H. Physikalischer Schaumspritzguss: Grundlagen für den industriellen Leichtbau; Hanser: München, 2023.10.3139/9783446469648.fmSearch in Google Scholar

22. Zhang, G.; Thompson, M. R. Reduced Fibre Breakage in a Glass-Fibre Reinforced Thermoplastic through Foaming. Compos. Sci. Technol. 2005, 65 (1), 2240–2249; https://doi.org/10.1016/j.compscitech.2005.04.050.Search in Google Scholar

23. Lohr, C. Prozess-Struktur-Eigenschafts-Beziehung integral im Hochdruckverfahren gefertigter, langglasfaserverstärkter Polymerschaumsandwichbauteile. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karlsruhe, 2019.Search in Google Scholar

24. Qin, X.; Thompson, M. R.; Hrymak, A. N.; Torres, A. Rheological Comparison of Chemical and Physical Blowing Agents in a Thermoplastic Polyolefin. Ind. Eng. Chem. Res. 2006, 45 (8), 2734–2740. https://doi.org/10.1021/ie0510932.Search in Google Scholar

25. Hopmann, C.; Zhang, Y.; Theißen, K. Schaumspritzgießen für dünnwandige Verpackungen. Kunststoffe 2019, 109 (10).Search in Google Scholar

26. Eyerer, P.; Elsner, P.; Hirth, T. Die Kunststoffe und ihre Eigenschaften; Springer: Berlin, Heidelberg, New York, 2005.10.1007/b137575Search in Google Scholar

27. Gaub, H. Profoam – Cost-Efficient Process for Manufacturing Foamed Lightweight Parts. Reinforced Plastics 2017, 61 (2). https://doi.org/10.1016/j.repl.2015.12.074.Search in Google Scholar

28. Seibt, S. Grundlagen und Anwendungen der Gasbeladung resorbierbarer Polyester: Implantatherstellung im Spritzgiess- und Begasungsverfahren. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1996.Search in Google Scholar

29. Rieck, M. Mikrospritzgießen Gasbeladener Thermoplaste. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2023.Search in Google Scholar

30. Gómez-Monterde, J.; Hain, J.; Sánchez-Soto, M.; Maspoch, M.Ll. Microcellular Injection Moulding: a Comparison between MuCell Process and the Novel Micro-foaming Technology IQ Foam. J. Mater. Process. Technol. 2019, 268 (1), 162–170. https://doi.org/10.1016/j.jmatprotec.2019.01.015.Search in Google Scholar

31. N. N CO2-Verfahren reduziert Kosten für Schaumspritzguss. K-Aktuell 2018, 9 (1).Search in Google Scholar

32. Obeloer, D. T. Thermoplast-Schaumspritzgießen mit gemeinsamer Granulat- und Gaszuführung. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2012.Search in Google Scholar

33. Simon, S. A.; Hain, J.; Sracic, M. W.; Tewani, H. R.; Prabhakar, P.; Osswald, T. Mechanical Response of Fibre-Filled Automotive Body Panels Manufactured with the Ku-Fizz™ Microcellular Injection Molding Process. Polymers 2022, 14 (22), 4916. https://doi.org/10.3390/polym14224916.Search in Google Scholar PubMed PubMed Central

34. O`Regan, A.; Akay, M. The Distribution of Fibre Lengths in Injection Moulded Polyamide Composite Components. J. Mater. Process. Technol. 1996, 56 (1), 282–291; https://doi.org/10.1016/0924-0136(95)01842-5.Search in Google Scholar

35. Hopmann, C.; Michaeli, W. Einführung in die Kunststoffverarbeitung; Hanser: München, 2015.10.3139/9783446446281.fmSearch in Google Scholar

36. Elbe, W. Untersuchung zum Plastifizierverhalten von Schneckenspritzgießmaschinen. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1973.Search in Google Scholar

37. Würtele, M. Vom Maschinentrichter bis zur Düse: der Aufbereitungsprozess und sein Einfluss auf die Qualität Präzision im Spritzgießprozess. In Präzision im Spritzgießprozess, Tagung, Baden-Baden 7–8 März 2001, VDI-Verlag: Düsseldorf, 2001; pp. 94–134.Search in Google Scholar

Received: 2024-06-05
Accepted: 2024-08-07
Published Online: 2024-08-28
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0104/html
Scroll to top button