Abstract
The processing of long glass fibre-reinforced thermoplastics results in considerable fibre damage, particularly during plasticising. By using thermoplastic foam injection moulding (FIM) with a constant blowing agent atmosphere, fibre damage during plasticisation can be reduced. This can be attributed to the reduction of the melt viscosity on the one hand and the influence of the melting behaviour on the other. Therefore, the influence of the FIM and the process parameters on the fibre length and the fibre length distribution are analysed and compared with the influence of the process parameters on the melt viscosity.
Funding source: Bundesministerium für Wirtschaft und Klimaschutz
Award Identifier / Grant number: 03LB3044E
Acknowledgements
The authors would like to thank all institutions and partners, in particular the companies Celanese and Bosch, for their excellent cooperation.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The research project 03LB3044E of the Research Association for Plastics Processing is funded by the Federal Ministry of Economics and Climate Protection through the Technology Transfer Program Lightweight Construction (TTP Leichtbau) on the basis of a resolution of the German Bundestag.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Wierda, L.; Li, W.; Kemna, R. Ecodesign Impact Accounting Overview Report 2023; Annual Overview Report 2023 from European Union: Delft, NL, 2024.Search in Google Scholar
2. Altstädt, V.; Mantey, A. Thermoplast-Schaumspritzgießen; Hanser: München, 2011.10.3139/9783446425743Search in Google Scholar
3. Ning, H.; Lu, N.; Hassen, A. A.; Chawla, K.; Selim, M.; Pillay, S. A Review of Long Fibre-Reinforced Thermoplastic or Long Fibre Thermoplastic (LFT) Composites. Int. Mater. Rev. 2019, 65 (3). https://doi.org/10.1080/09506608.2019.1585004.Search in Google Scholar
4. Wang, M. L.; Chang, R. Y.; Hsu, C. H. Molding Simulation: Theory and Practice; Hanser: Munich, 2018.10.3139/9781569906200.fmSearch in Google Scholar
5. Thomason, J. L.; Vlug, M. A. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 1. Tensile and Flexural Modulus. Compos. Part A: Appl. Sci. Manuf. 1996, 27 (6), 477–484. https://doi.org/10.1016/1359-835X(95)00065-A.Search in Google Scholar
6. Thomason, J. L.; Vlug, M. A.; Schipper, G.; Krikor, H. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: Part 3. Strength and Strain at Failure. Compos. Part A: Appl. Sci. Manuf. 1996, 27 (11), 1075–1084. https://doi.org/10.1016/1359-835X(96)00066-8.Search in Google Scholar
7. Thomason, J. L.; Vlug, M. A. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-Reinforced Polypropylene: 4. Impact Properties. Compos. Part A: Appl. Sci. Manuf. 1996, 28 (3), 277–288. https://doi.org/10.1016/S1359-835X(96)00127-3.Search in Google Scholar
8. Thomason, J. L.; Vlug, M. A. The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene: 5. Injection Moulded Long and Short Fibre PP. Compos. Part A: Appl. Sci. Manuf. 2002, 33 (12), 1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3.Search in Google Scholar
9. Thieltges, H. P. Faserschädigung Beim Spritzgießen Verstärkter Kunststoffe. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1991.Search in Google Scholar
10. Metten, M.; Cremer, M. Verfahrensparameter beeinflussen die Faserlänge: Langfaserverstärkte Thermoplaste spritzgießen. Kunststoffe 2000, 90 (1), 80–83.Search in Google Scholar
11. Inoue, A.; Morita, K.; Tanaka, T.; Arao, Y.; Sawada, Y. Effect of Screw Design on Fibre Breakage and Dispersion in Injection-Molded Long Glass-Fibre-Reinforced Polypropylene. J. Compos. Mater. 2015, 49 (1), 75–84. https://doi.org/10.1177/0021998313514872.Search in Google Scholar
12. Turkovich, R. V.; Erwin, L. Fibre Fracture in Reinforced Thermoplastic Processing. Polym. Eng. Sci. 1983, 23 (13), 743–756. https://doi.org/10.1002/pen.760231309.Search in Google Scholar
13. Mittal, R. K.; Gupta, V. B.; Sharma, P. K. Theoretical and Experimental Study of Fibre Attrition during Extrusion of Glass-Fibre-Reinforced Polypropylene. Compos. Sci. Technol. 1988, 31, 295–307. https://doi.org/10.1016/0266-3538(88)90035-8.Search in Google Scholar
14. Bechara, A.; Goris, S.; Yanev, A.; Brands, D.; Osswald, T. Novel Modeling Approach for Fibre Breakage during Molding of Long Fibre-Reinforced Thermoplastics. Phys. Fluids 2021, 33 (7). https://doi.org/10.1063/5.0058693.Search in Google Scholar
15. Roch, A. Leichtbaupotenzial langfaserverstärkter Thermoplaste (LFT) in Integralschaumbauweise hergestellt durch Schaumspritzgießen mit Dekompressionshub. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karlsruhe, 2015.Search in Google Scholar
16. Djalili-Moghaddam, M.; Toll, S. Fibre Suspension Rheology: Effect of Concentration, Aspect Ratio and Fibre Size. Rheol. Acta 2006, 45 (1), 315–320; https://doi.org/10.1007/s00397-005-0021-y.Search in Google Scholar
17. Thomasset, J.; Carreau, P.; Sanschagrin, B.; Ausias, G. Rheological Properties of Long Glass Fibre Filled Polypropylene. J. Non-Newtonian Fluid Mech. 2005, 125 (1), 25–34; https://doi.org/10.1016/j.jnnfm.2004.09.004.Search in Google Scholar
18. Kim, D. H.; Lee, Y. S.; Son, Y. Anomalous Rheological Behavior of Long Glass Fibre Reinforced Polypropylene. Korea-Australia Rheology J. 2012, 24 (4), 307–312; https://doi.org/10.1007/s13367-012-0037-7.Search in Google Scholar
19. Qin, X.; Thompson, M. R.; Hrymak, A. N.; Torres, A. Rheology Studies of Polyethylene/Chemical Blowing Agent Solutions within an Injection Molding Machine. Polym. Eng. Sci. 2005, 45 (8), 1108–1118; https://doi.org/10.1002/pen.20371.Search in Google Scholar
20. Pretel, G. U. Fließverhalten Treibmittelbeladener Polymerschmelzen. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2005.Search in Google Scholar
21. Traut, H.; Wobbe, H. Physikalischer Schaumspritzguss: Grundlagen für den industriellen Leichtbau; Hanser: München, 2023.10.3139/9783446469648.fmSearch in Google Scholar
22. Zhang, G.; Thompson, M. R. Reduced Fibre Breakage in a Glass-Fibre Reinforced Thermoplastic through Foaming. Compos. Sci. Technol. 2005, 65 (1), 2240–2249; https://doi.org/10.1016/j.compscitech.2005.04.050.Search in Google Scholar
23. Lohr, C. Prozess-Struktur-Eigenschafts-Beziehung integral im Hochdruckverfahren gefertigter, langglasfaserverstärkter Polymerschaumsandwichbauteile. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karlsruhe, 2019.Search in Google Scholar
24. Qin, X.; Thompson, M. R.; Hrymak, A. N.; Torres, A. Rheological Comparison of Chemical and Physical Blowing Agents in a Thermoplastic Polyolefin. Ind. Eng. Chem. Res. 2006, 45 (8), 2734–2740. https://doi.org/10.1021/ie0510932.Search in Google Scholar
25. Hopmann, C.; Zhang, Y.; Theißen, K. Schaumspritzgießen für dünnwandige Verpackungen. Kunststoffe 2019, 109 (10).Search in Google Scholar
26. Eyerer, P.; Elsner, P.; Hirth, T. Die Kunststoffe und ihre Eigenschaften; Springer: Berlin, Heidelberg, New York, 2005.10.1007/b137575Search in Google Scholar
27. Gaub, H. Profoam – Cost-Efficient Process for Manufacturing Foamed Lightweight Parts. Reinforced Plastics 2017, 61 (2). https://doi.org/10.1016/j.repl.2015.12.074.Search in Google Scholar
28. Seibt, S. Grundlagen und Anwendungen der Gasbeladung resorbierbarer Polyester: Implantatherstellung im Spritzgiess- und Begasungsverfahren. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1996.Search in Google Scholar
29. Rieck, M. Mikrospritzgießen Gasbeladener Thermoplaste. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2023.Search in Google Scholar
30. Gómez-Monterde, J.; Hain, J.; Sánchez-Soto, M.; Maspoch, M.Ll. Microcellular Injection Moulding: a Comparison between MuCell Process and the Novel Micro-foaming Technology IQ Foam. J. Mater. Process. Technol. 2019, 268 (1), 162–170. https://doi.org/10.1016/j.jmatprotec.2019.01.015.Search in Google Scholar
31. N. N CO2-Verfahren reduziert Kosten für Schaumspritzguss. K-Aktuell 2018, 9 (1).Search in Google Scholar
32. Obeloer, D. T. Thermoplast-Schaumspritzgießen mit gemeinsamer Granulat- und Gaszuführung. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 2012.Search in Google Scholar
33. Simon, S. A.; Hain, J.; Sracic, M. W.; Tewani, H. R.; Prabhakar, P.; Osswald, T. Mechanical Response of Fibre-Filled Automotive Body Panels Manufactured with the Ku-Fizz™ Microcellular Injection Molding Process. Polymers 2022, 14 (22), 4916. https://doi.org/10.3390/polym14224916.Search in Google Scholar PubMed PubMed Central
34. O`Regan, A.; Akay, M. The Distribution of Fibre Lengths in Injection Moulded Polyamide Composite Components. J. Mater. Process. Technol. 1996, 56 (1), 282–291; https://doi.org/10.1016/0924-0136(95)01842-5.Search in Google Scholar
35. Hopmann, C.; Michaeli, W. Einführung in die Kunststoffverarbeitung; Hanser: München, 2015.10.3139/9783446446281.fmSearch in Google Scholar
36. Elbe, W. Untersuchung zum Plastifizierverhalten von Schneckenspritzgießmaschinen. Ph.D. Dissertation, Institut für Kunststoffverarbeitung, RWTH Aachen, Aachen, 1973.Search in Google Scholar
37. Würtele, M. Vom Maschinentrichter bis zur Düse: der Aufbereitungsprozess und sein Einfluss auf die Qualität Präzision im Spritzgießprozess. In Präzision im Spritzgießprozess, Tagung, Baden-Baden 7–8 März 2001, VDI-Verlag: Düsseldorf, 2001; pp. 94–134.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
Articles in the same Issue
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene