Home Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
Article
Licensed
Unlicensed Requires Authentication

Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel

  • Anilkumar Yamala ORCID logo EMAIL logo , Jai Shree Kurba , D. Sanjeev Kumar , Ravi Kumar Kanaparthi and Ashok K. Madikonda
Published/Copyright: September 16, 2024
Become an author with De Gruyter Brill

Abstract

Hydrogels possess excellent biological properties that make them ideal for biomedical applications. They are compatible with living cells and tissues because they can swell in the presence of water. In this study, we investigated the stability and biocompatibility of hydrogels. We synthesized and characterized N-acryl glycine (NAG) monomer and then synthesized its copolymer using the miniemulsion-polymerization technique, a soft-hydrogel method. To confirm the morphological properties of the dried hydrogel particles, we used the field emission scanning electron microscopy (FESEM) technique. We also investigated the rheological properties of the hydrogels for different concentrations to evaluate their mechanical strength and gel-like properties. Our findings indicated that the 10 % gel had superior strength and yield strain at all examined temperatures (30 °C, 37 °C, and 40 °C) compared to other concentrated gels. We systematically evaluated the biocompatibility of the hydrogel using three different cell lines: HEK 293T, RAW 264.7, and HeLa. Our cell line studies demonstrated that hydrogels are viable when exposed to a concentration of 0.5 mg/mL. Moreover, cell proliferation was observed at concentrations below 0.25 mg/mL. The MTT assay and rheology results suggest that hydrogel characteristics are more suitable for various biomedical applications, such as drug delivery and tissue engineering.


Corresponding author: Anilkumar Yamala, School of Engineering Science and Technology, University of Hyderabad, Prof. CR Rao Road, 500046, Hyderabad, Telangana, India, E-mail:

Award Identifier / Grant number: university grant commission

Funding source: University of Hyderabad

Award Identifier / Grant number: university grant commission

Acknowledgments

The support received from University of Hyderabad and Central University of Kerala for consumables and infrastructure is gratefully acknowledged.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Anilkumar Yamala: conceptualisation, experimental work, writing – review & editing. Jai Shree K: rheological experimental work and data analysis. D. Sanjeev Kumar: review & editing. Ravi Kumar Kanaparthi: resources for chemical synthesis work, review & editing. Ashok Kumar Madikonda: antibacterial experimental work, writing – review.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Graeber, G.; Díaz-Marín, C. D.; Gaugler, L. C.; Zhong, Y.; El Fil, B.; Liu, X.; Wang, E. N. Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling-Induced Salt Loading. Adv. Mater. 2023, 2211783. https://doi.org/10.1002/adma.202211783.Search in Google Scholar PubMed

2. (a)Ebrahimi, R. The Study of Factors Affecting the Swelling of Ultrasound-Prepared Hydrogel. Polym. Bull. 2018, 76, 1023–1039.(b)Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6 (2), 105–121.10.1007/s00289-018-2423-xSearch in Google Scholar

3. Khan, S.; Rauf, A.; Xu, G. Hydrogels. De Gruyter: Lahore, 2024.10.1515/9783111334080Search in Google Scholar

4. (a)Elbedwehy, A. M.; Atta, A. M. Novel Superadsorbent Highly Porous Hydrogel Based on Arabic Gum and Acrylamide Grafts for Fast and Efficient Methylene Blue Removal. Polymers 2020, 12 (2). https://doi.org/10.3390/polym12020338.(b)Huber, T.; Feast, S.; Dimartino, S.; Cen, W.; Fee, C. Analysis of the Effect of Processing Conditions on Physical Properties of Thermally Set Cellulose Hydrogels. Materials 2019, 12 (7). https://doi.org/10.3390/ma12071066.Search in Google Scholar PubMed PubMed Central

5. (a)Shou, Y.; Zhang, J.; Yan, S.; Xia, P.; Xu, P.; Li, G.; Zhang, K.; Yin, J. Thermoresponsive Chitosan/DOPA-Based Hydrogel as an Injectable Therapy Approach for Tissue-Adhesion and Hemostasis. ACS Biomater. Sci. Eng. 2020, 6 (6), 3619–3629. https://doi.org/10.1021/acsbiomaterials.0c00545.(b)Agarwal, S. Major Factors Affecting the Characteristics of Starch Based Biopolymer Films. Eur. Polym. J. 2021, 160, 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788.Search in Google Scholar PubMed

6. Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current Hydrogel Advances in Physicochemical and Biological Response-Driven Biomedical Application Diversity. Signal Transduct. Targeted Ther. 2021, 6 (1), 426. https://doi.org/10.1038/s41392-021-00830-x.Search in Google Scholar PubMed PubMed Central

7. Chen, W.; Ming, Y.; Wang, M.; Huang, M.; Liu, H.; Huang, Y.; Huang, Z.; Qing, L.; Wang, Q.; Jia, B., Nanocomposite Hydrogels in Regenerative Medicine: Applications and Challenges. Macromol. Rapid Commun. 2023, 44 (15), e2300128. https://doi.org/10.1002/marc.202300128.Search in Google Scholar PubMed

8. Griswold, E.; Cappello, J.; Ghandehari, H. Silk-elastinlike Protein-Based Hydrogels for Drug Delivery and Embolization. Adv. Drug Deliv. Rev. 2022, 191, 114579. https://doi.org/10.1016/j.addr.2022.114579.Search in Google Scholar PubMed

9. Wang, Y.; Wu, Y.; Zhang, B.; Zheng, C.; Hu, C.; Guo, C.; Kong, Q.; Wang, Y. Repair of Degenerative Nucleus Pulposus by Polyphenol Nanosphere-Encapsulated Hydrogel Gene Delivery System. Biomaterials 2023, 298, 122132. https://doi.org/10.1016/j.biomaterials.2023.122132.Search in Google Scholar PubMed

10. Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H., Chen, X., Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Int. J. Polym. Mater. 2023, 15 (10). https://doi.org/10.3390/pharmaceutics15102514.Search in Google Scholar PubMed PubMed Central

11. Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. polymers. 2020, 12 (11). https://doi.org/10.3390/polym12112702.Search in Google Scholar PubMed PubMed Central

12. Stojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R. K. Relationship Between Structure and Rheology of Hydrogels for Various Applications. Gels 2021, 7 (4), 255. https://doi.org/10.3390/gels7040255.Search in Google Scholar PubMed PubMed Central

13. Xu, C.; Dai, G.; Hong, Y. Recent Advances in High-Strength and Elastic Hydrogels for 3D Printing in Biomedical Applications. Acta Biomater. 2019, 95, 50–59. https://doi.org/10.1016/j.actbio.2019.05.032.Search in Google Scholar PubMed PubMed Central

14. Gull, N.; Khan, S. M.; Khalid, S.; Zia, S.; Islam, A.; Sabir, A.; Sultan, M.; Hussain, F.; Khan, R. U.; Butt, M. T. Z. Designing of Biocompatible and Biodegradable Chitosan Based Crosslinked Hydrogel for In Vitro Release of Encapsulated Povidone-Iodine: A Clinical Translation. Int. J. Biol. Macromol. 2020, 164, 4370–4380. https://doi.org/10.1016/j.ijbiomac.2020.09.031.Search in Google Scholar PubMed

15. Gull, N.; Khan, S. M.; Butt, M. T. Z.; Zia, S.; Khalid, S.; Islam, A.; Sajid, I.; Khan, R. U.; King, M. W. Hybrid Cross-Linked Hydrogels as a Technology Platform for In Vitro Release of Cephradine. Polym. Adv. Technol. 2019, 30 (9), 2414–2424. https://doi.org/10.1002/pat.4688.Search in Google Scholar

16. Dirauf, M.; Muljajew, I.; Weber, C.; Schubert, U. S. Recent Advances in Degradable Synthetic Polymers for Biomedical Applications ‐ beyond Polyesters. Prog. Polym. Sci. 2022, 129, 101547. https://doi.org/10.1016/j.progpolymsci.2022.101547.Search in Google Scholar

17. Yang, X.; Li, J.; Chen, X.; Wang, T.; Li, G.; Zhang, K.; Yin, J.; Cui, H. Multifunctional Hydrogels for Wound Healing. J. Polym. Eng. 2024, 44 (3), 173–194. https://doi.org/10.1515/polyeng-2023-0148.Search in Google Scholar

18. Tanwar, M.; Gupta, R. K.; Rani, A. Natural Gums and Their Derivatives Based Hydrogels: in Biomedical, Environment, Agriculture, and Food Industry. Crit. Rev. Biotechnol., 1–27.Search in Google Scholar

19. Baby, D. K. Chapter 9 - Rheology of Hydrogels. In Rheology of Polymer Blends and Nanocomposites; Thomas, S.; Sarathchandran, C.; Chandran, N., Eds.; Elsevier: Amsterdam, London, Philadelphia, PA, 2020; pp 193–204.10.1016/B978-0-12-816957-5.00009-4Search in Google Scholar

20. Vedadghavami, A.; Minooei, F.; Mohammadi, M. H.; Khetani, S.; Rezaei Kolahchi, A.; Mashayekhan, S.; Sanati-Nezhad, A. Manufacturing of Hydrogel Biomaterials with Controlled Mechanical Properties for Tissue Engineering Applications. Acta Biomater. 2017, 62, 42–63. https://doi.org/10.1016/j.actbio.2017.07.028.Search in Google Scholar PubMed

21. Rathinavel, T.; Sasikanth, V.; Meganathan, B.; Seshachalam, S.; Nallappa, H.; Gopi, B. Biopolymers 1 General Overview of Biopolymers: Structure and Properties. In Environmental Applications; Aravind, J.; Kamaraj, M., Eds.; De Gruyter: New Delhi, 2023; pp 1–28.10.1515/9783110987188-001Search in Google Scholar

22. Zhou, X.; Hao, Y.; Zhang, X.; He, X.; Zhang, C. Cellul. Based Polym. 2023, 8 (9), 2001–2048. https://doi.org/10.1515/psr-2020-0067.Search in Google Scholar

23. Ramezani Dana, H.; Ebrahimi, F. Synthesis, Properties, and Applications of Polylactic Acid-Based Polymers. Polym. Eng. Sci. 2023, 63 (1), 22–43. https://doi.org/10.1002/pen.26193.Search in Google Scholar

24. Li, Z.; Yong, H.; Wang, K.; Zhou, Y.-N.; Lyu, J.; Liang, L.; Zhou, D. (Controlled) Free Radical (Co)polymerization of Multivinyl Monomers: Strategies, Topological Structures and Biomedical Applications. Chem. Commun. 2023, 59 (28), 4142–4157. https://doi.org/10.1039/d3cc00250k.Search in Google Scholar PubMed

25. Buruiana, E. C.; Murariu, M.; Buruiana, T. Synthesis and Characterization of Poly [N-acryloyl-(D/L), (+/−)-phenylalanine-co-(D/L), (−/+)N-Methacryloyloxyethyl-N′-2-Hydroxybutyl(urea)] Copolymers. Cent. Eur. J. Chem. 2014, 12 (10), 1056–1066. https://doi.org/10.2478/s11532-014-0556-9.Search in Google Scholar

26. Mahfoud, B.; Vert, M. Poly[(N-acryloyl Glycinamide)-Co-(n-Acryloyl L-Alaninamide)] and Their Ability to Form Thermo-Responsive Hydrogels for Sustained Drug Delivery. Gels 2019, 5, 13. https://doi.org/10.3390/gels5010013.Search in Google Scholar PubMed PubMed Central

27. Rop, K.; Mbui, D.; Njomo, N.; Karuku, G. N.; Michira, I.; Ajayi, R. F. Biodegradable Water Hyacinth Cellulose-Graft-Poly(ammonium Acrylate-Co-Acrylic Acid) Polymer Hydrogel for Potential Agricultural Application. Heliyon 2019, 5 (3), e01416. https://doi.org/10.1016/j.heliyon.2019.e01416.Search in Google Scholar PubMed PubMed Central

28. Zain, G.; Nada, A. A.; El-Sheikh, M. A.; Attaby, F. A.; Waly, A. I. Superabsorbent Hydrogel Based on Sulfonated-Starch for Improving Water and Saline Absorbency. Int. J. Biol. Macromol. 2018, 115, 61–68. https://doi.org/10.1016/j.ijbiomac.2018.04.032.Search in Google Scholar PubMed

29. (a)Yamala, A. K.; Nadella, V.; Mastai, Y.; Prakash, H.; Paik, P. Poly-N-acryloyl-(l-phenylalanine Methyl Ester) Hollow Core Nanocapsules Facilitate Sustained Delivery of Immunomodulatory Drugs and Exhibit Adjuvant Properties. Nanoscale 2017, 9 (37), 14006–14014. https://doi.org/10.1039/c7nr03724d.(b)Yamala, A. K.; Nadella, V.; Mastai, Y.; Prakash, H.; Paik, P. P-LME Polymer Nanocapsules Stimulate Naïve Macrophages and Protect Them from Oxidative Damage during Controlled Drug Release. J. Appl. Polym. Sci. 2020, 137 (6), 48363. https://doi.org/10.1002/app.48363.Search in Google Scholar PubMed

30. Valgas, C.; Souza, S. M. d.; Smânia, E. F. A.; Smânia, Jr, A. Screening Methods to Determine Antibacterial Activity of Natural Products. Braz. J. Microbiol. 2007, 38, 369–380. https://doi.org/10.1590/s1517-83822007000200034.Search in Google Scholar

31. Musyanovych, A.; Landfester, K. Polymer Micro- and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromol. Biosci. 2014, 14 (4), 458–477. https://doi.org/10.1002/mabi.201300551.Search in Google Scholar PubMed

32. Dimonie, V.; Sudol, D.; El-Aasser, M. Role of Surfactants in Emulsion Polymerization Polymers by Design. Rev. Chim. 2008, 59, 1218–1221. https://doi.org/10.37358/rc.08.11.2005.Search in Google Scholar

33. (a)De San Luis, A.; Kleinsteuber, M.; Schuett, T.; Schubert, S.; Schubert, U. S. Miniemulsion Polymerization at Low Temperature: A Strategy for One-Pot Encapsulation of Hydrophobic Anti-inflammatory Drugs into Polyester-Containing Nanoparticles. J. Colloid Interface Sci. 2022, 612, 628–638. https://doi.org/10.1016/j.jcis.2021.12.189.(b)Hyldbakk, A.; Mørch, Y.; Snipstad, S.; Åslund, A. K. O.; Klinkenberg, G.; Nakstad, V. T.; Wågbø, A.-M.; Schmid, R.; Molesworth, P. P. Identification of Novel Cyanoacrylate Monomers for Use in Nanoparticle Drug Delivery Systems Prepared by Miniemulsion Polymerisation – A Multistep Screening Approach. Int. J. Pharm. X 2022, 4, 100124. https://doi.org/10.1016/j.ijpx.2022.100124.Search in Google Scholar PubMed

34. Deriabin, K. V.; Dobrynin, M. V.; Islamova, R. M. A Metal-free Radical Technique for Cross-Linking of Polymethylhydrosiloxane or Polymethylvinylsiloxane Using AIBN. Dalton Trans. 2020, 49 (26), 8855–8858. https://doi.org/10.1039/d0dt01061h.Search in Google Scholar PubMed

35. Hu, C.; Wei, H.; Hua, B.; Zhang, Y.; Wang, G.; Shen, Y.; Niu, Y. Preparation and Application of Poly(α-L-Lysine)-Based Interpenetrating Network Hydrogel via Synchronous Free-Radical Polymerization and Amine-Anhydride Reaction in Water. J. Polym. Res. 2022, 29 (5), 194. https://doi.org/10.1007/s10965-022-03054-x.Search in Google Scholar

36. Sobiesiak, M. Analysis of Structure and Properties of DVB–GMA Based Porous Polymers. Adsorption 2019, 25 (3), 257–266. https://doi.org/10.1007/s10450-018-9998-2.Search in Google Scholar

37. Basu, A.; Xu, Y.; Still, T.; Arratia, P. E.; Zhang, Z.; Nordstrom, K. N.; Rieser, J. M.; Gollub, J. P.; Durian, D. J.; Yodh, A. G. Rheology of Soft Colloids across the Onset of Rigidity: Scaling Behavior, Thermal, and Non-thermal Responses. Soft Matter 2014, 10 (17), 3027–3035. https://doi.org/10.1039/c3sm52454j.Search in Google Scholar PubMed

38. Thang, N. H.; Chien, T. B.; Cuong, D. X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9 (7), 523. https://doi.org/10.3390/gels9070523.Search in Google Scholar PubMed PubMed Central

39. Wang, Y.; Zheng, C.; Wu, Y.; Zhang, B.; Hu, C.; Guo, C.; Kong, Q.; Wang, Y. An Injectable and Self-Strengthening Nanogel Encapsuled Hydrogel Gene Delivery System Promotes Degenerative Nucleus Pulposus Repair. Compos. B Eng. 2023, 250, 110469. https://doi.org/10.1016/j.compositesb.2022.110469.Search in Google Scholar

40. Zhang, W.; Cui, X.; Zhang, H.; Yang, Y.; Tang, P. Linear Viscoelasticity, Nonlinear Rheology and Applications of Polyethylene Terephthalate Vitrimers. J. Polym. Sci. 2023, 61 (17), 2010–2024. https://doi.org/10.1002/pol.20230169.Search in Google Scholar

41. Li, W.; Fang, K.; Yuan, H.; Li, D.; Li, H.; Chen, Y.; Luo, X.; Zhang, L.; Ye, X. Acid-induced Poria Cocos Alkali-Soluble Polysaccharide Hydrogel: Gelation Behaviour, Characteristics, and Potential Application in Drug Delivery. Int. J. Biol. Macromol. 2023, 242, 124383. https://doi.org/10.1016/j.ijbiomac.2023.124383.Search in Google Scholar PubMed

42. Buxboim, A.; Ivanovska, I.; Discher, D. Matrix Elasticity, Cytoskeletal Forces and Physics of the Nucleus: How Deeply Do Cells ’Feel’ outside and in? J. Cell Sci. 2010, 123, 297–308. https://doi.org/10.1242/jcs.041186.Search in Google Scholar PubMed PubMed Central

43. Buxboim, A.; Swift, J.; Irianto, J.; Spinler, K. R.; Dingal, P. C.; Athirasala, A.; Kao, Y. R.; Cho, S.; Harada, T.; Shin, J. W.; Discher, D. E. Matrix Elasticity Regulates Lamin-A,C Phosphorylation and Turnover with Feedback to Actomyosin. Curr. Biol. CB 2014, 24 (16), 1909–1917. https://doi.org/10.1016/j.cub.2014.07.001.Search in Google Scholar PubMed PubMed Central

44. Georges, P. C.; Miller, W. J.; Meaney, D. F.; Sawyer, E. S.; Janmey, P. A. Matrices with Compliance Comparable to that of Brain Tissue Select Neuronal over Glial Growth in Mixed Cortical Cultures. Biophys. J. 2006, 90 (8), 3012–3018. https://doi.org/10.1529/biophysj.105.073114.Search in Google Scholar PubMed PubMed Central

45. Sharma, R. I.; Snedeker, J. G. Biochemical and Biomechanical Gradients for Directed Bone Marrow Stromal Cell Differentiation toward Tendon and Bone. Biomaterials 2010, 31 (30), 7695–7704. https://doi.org/10.1016/j.biomaterials.2010.06.046.Search in Google Scholar PubMed

46. Peyton, S. R.; Kim, P. D.; Ghajar, C. M.; Seliktar, D.; Putnam, A. J. The Effects of Matrix Stiffness and RhoA on the Phenotypic Plasticity of Smooth Muscle Cells in a 3-D Biosynthetic Hydrogel System. Biomaterials 2008, 29 (17), 2597–2607. https://doi.org/10.1016/j.biomaterials.2008.02.005.Search in Google Scholar PubMed PubMed Central

47. Budai, L.; Budai, M.; Fülöpné Pápay, Z. E.; Vilimi, Z.; Antal, I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity Gels 2023, 9 (6), 469. https://doi.org/10.3390/gels9060469.Search in Google Scholar PubMed PubMed Central

48. Dragomir, D. C.; Carbunaru, V.; Moldovan, C. A.; Lascar, I.; Dontu, O.; Ristoiu, V.; Gheorghe, R.; Oproiu, A. M.; Firtat, B.; Franti, E.; Dascalu, M.; Neagu, T. P.; Enescu, D. M.; Ionescu, O.; Ion, M.; Mihailescu, C.; Costea, R.; Gonciarov, M.; Ionescu, G.; Dumitru, A.; Minca, A.; Niculae, C.; Raita, S.; Rosca, I.; Lazarescu, S.; Stoica, C.; Teleanu, R. I.; Teleanu, D. M. Biocompatibility Analysis of GelMa Hydrogel and Silastic RTV 9161 Elastomer for Encapsulation of Electronic Devices for Subdermal Implantable Devices Coatings 2023, 9 (6), 469. https://doi.org/10.3390/coatings13010019.Search in Google Scholar

49. Onder, F. C.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Preparation of Antioxidant-Biodegradable Poly(acrylic Acid-Co-2-Hydroxyethyl Methacrylate) Hydrogel Using Rutin as a Crosslinker: Drug Release and Anticancer Activity. React. Funct. Polym. 2023, 190, 105650. https://doi.org/10.1016/j.reactfunctpolym.2023.105650.Search in Google Scholar

50. Kumar, S.; Majhi, R. K.; Sanyasi, S.; Goswami, C.; Goswami, L. Acrylic Acid Grafted Tamarind Kernel Polysaccharide-Based Hydrogel for Bone Tissue Engineering in Absence of Any Osteo-Inducing Factors. Connect. Tissue Res. 2018, 59(Suppl. 1), 111–121. https://doi.org/10.1080/03008207.2018.1442444.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2023-0247).


Received: 2023-11-03
Accepted: 2024-06-25
Published Online: 2024-09-16
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0247/html
Scroll to top button