Home Development of MXene-based flexible piezoresistive sensors
Article
Licensed
Unlicensed Requires Authentication

Development of MXene-based flexible piezoresistive sensors

  • Tong Xu EMAIL logo and Heyan Peng
Published/Copyright: August 23, 2024
Become an author with De Gruyter Brill

Abstract

The flexibility and sensitivity of traditional sensors is hard to achieve unless wearable technology develops. Flexible piezoresistive sensor (FPS) is one of the solutions in the nondestructive health monitoring of living body. In the application of sensing devices for physiological or biochemical signals, fast feedback speed and accurate signal feedback are essential requirements for obtaining sensitive response signals. Additionally, the development of FPS has promoted the research of conductive materials that could be used in wearable devices. However, improving the performance of functional materials is an important way of effort for researchers. Recently, MXene as a new kind of 2D materials and their composites have made a tremendous impact in the field of sensors for wearable health sensors. Numerous conductive materials based 2D MXene could expedite their practical application in FPS by overcoming the present limitations of FPS such as poor responsivity, signal accuracy, and the narrower corresponding range. There has been plenty of breakthrough in the MXene-based FPS in the past several years. The main purpose of this paper is reviewing the recent development of MXene-based FPS and providing an outlook on the future development of it.


Corresponding author: Tong Xu, Shanghai Technical Institute of Electronics & Information, No. 3098, Wahong Road, Fengxian District, Shanghai 201411, People’s Republic of China, E-mail:

Funding source: Talent start-up fund

Award Identifier / Grant number: GCC2023033

  1. Research ethics: Not applicable.

  2. Author contributions: Dr. Tong Xu is responsible for the writing and review of this paper, and Mr. Peng Hejian is responsible for the secondary revision and supplementary literature review of this paper. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Talent start-up fund (GCC2023033).

  5. Data availability: Not applicable.

References

1. Sang, M.; Zhang, J. S.; Liu, S.; Zhou, J. Y.; Wang, Y.; Deng, H. X.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Advanced MXene/Shear Stiffening Composite-Based Sensor with High-Performance Electromagnetic Interference Shielding and Anti-impacting Bi-protection Properties for Smart Wearable Device. Chem. Eng. J. 2022, 440, 135896; https://doi.org/10.1016/j.cej.2022.135869.Search in Google Scholar

2. Zhang, S. P.; Chhetry, A.; Zahed, M. A.; Sharma, S.; Park, C.; Yoon, S.; Park, J. Y. On-skin Ultrathin and Stretchable Multifunctional Sensor for Smart Healthcare Wearables. Flex. Electron. 2022, 6, 11; https://doi.org/10.1038/s41528-022-00140-4.Search in Google Scholar

3. Arulraj, A.; Mangalaraja, R.; Khalid, M. MXene: Pioneering 2D Materials. In Fundamental Aspects and Perspectives of MXenes; Springer, 2022; pp 1–16.10.1007/978-3-031-05006-0_1Search in Google Scholar

4. Li, S.; Zhang, Y.; Huang, H. Black Phosphorus-Based Heterostructures for Photocatalysis and Photoelectrochemical Water Splitting. J. Energy Chem. 2022, 67, 745–779; https://doi.org/10.1016/j.jechem.2021.11.023.Search in Google Scholar

5. Sivasankarapillai, V. S.; Sharma, T. S. K.; Wabaidur, K. Y. H. S. M.; Angaiah, S.; Dhanusuraman, R. MXene Based Sensing Materials: Current Status and Future Perspectives. ES Energy Environ. 2022, 15, 4–14.Search in Google Scholar

6. Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (G-C3n4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022, 12 (2), 294–367; https://doi.org/10.3390/nano12020294.Search in Google Scholar PubMed PubMed Central

7. Pattanayak, D. S.; Pal, D.; Mishra, J.; Thakur, C.; Wasewar, K. L. Doped Graphitic Carbon Nitride (G-C3n4) Catalysts for Efficient Photodegradation of Tetracycline Antibiotics in Aquatic Environments. Environ. Sci. Pollut. Res. 2022, 30, 1–8; https://doi.org/10.1007/s11356-022-19766-y.Search in Google Scholar PubMed

8. Wang, L.; Zhang, H.; Zhuang, T.; Liu, J.; Sojic, N.; Wang, Z. Sensitive Electrochemiluminescence Biosensing of Polynucleotide Kinase Using the Versatility of Two-Dimensional Ti3C2TX MXene Nanomaterials. Anal. Chim. Acta 2022, 1191, 339346; https://doi.org/10.1016/j.aca.2021.339346.Search in Google Scholar PubMed

9. Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible Electronics Based on 2D Transition Metal Dichalcogenides. J. Mater. 2022, 10, 89–121; https://doi.org/10.1039/d1ta06741a.Search in Google Scholar

10. Regan, E. C.; Wang, D.; Paik, E. Y.; Zeng, Y.; Zhang, L.; Zhu, J.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging Exciton Physics in Transition Metal Dichalcogenide Heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795; https://doi.org/10.1038/s41578-022-00440-1.Search in Google Scholar

11. Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A. K. Synthesis of Various Dimensional Metal Organic Frameworks (MOFs) and Their Hybrid Composites for Emerging Applications-A Review. Chemosphere 2022, 298, 134184; https://doi.org/10.1016/j.chemosphere.2022.134184.Search in Google Scholar PubMed

12. Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured Hybrids of Metal-Organic Frameworks (MOFs) and Covalent-Organic Frameworks (COFs). J. Mater. Chem. 2022, 10 (2), 475–507; https://doi.org/10.1039/d1ta06006f.Search in Google Scholar

13. Hu, T.; Tang, L.; Feng, H.; Zhang, J.; Li, X.; Zuo, Y.; Lu, Z.; Tang, W. Metalorganic Frameworks (MOFs) and Their Derivatives as Emerging Catalysts for electroFenton Process in Water Purification. Coord. Chem. Rev. 2022, 451, 214277; https://doi.org/10.1016/j.ccr.2021.214277.Search in Google Scholar

14. Chen, J.; Ding, Y.; Yan, D.; Huang, J.; Peng, S. Synthesis of MXene and its Application for Zinc-Ion Storage. SusMat 2022, 2 (3), 293–318; https://doi.org/10.1002/sus2.57.Search in Google Scholar

15. Deng, F.; Wu, P.; Qian, G.; Shuai, Y.; Zhang, L.; Peng, S.; Shuai, C.; Wang, G. Silver-Decorated Black Phosphorus: A Synergistic Antibacterial Strategy. Nanotechnology 2022, 33 (24), 245708; https://doi.org/10.1088/1361-6528/ac5aee.Search in Google Scholar PubMed

16. Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs): Recent Advances in Synthesis and Analytical Applications of MOF/COF Composites TrAC. Trends Anal. Chem. 2022, 157, 116741; https://doi.org/10.1016/j.trac.2022.116741.Search in Google Scholar

17. Zhang, H.; Wang, L.; Zhuang, T.; Wei, Z.; Xia, J.; Wang, Z. Nano-hybrid Luminophores of Ti3C2Tx Quantum Dots-Gold Nanoparticles Based on In Situ Generation for Sensitive Electrochemi Luminescence Biosensing. Anal. Bioanal. Chem. 2022, 414 (23), 6753–6760; https://doi.org/10.1007/s00216-022-04235-9.Search in Google Scholar PubMed

18. Uppuluri, R.; Gupta, A. S.; Rosas, A. S.; Mallouk, T. E. Soft Chemistry of Ion Exchangeable Layered Metal Oxides. Chem. Soc. Rev. 2018, 47 (7), 2401–2430; https://doi.org/10.1039/c7cs00290d.Search in Google Scholar PubMed

19. Kalantar-zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two Dimensional and Layered Transition Metal Oxides. Appl. Mater. Today 2016, 5, 73–89; https://doi.org/10.1016/j.apmt.2016.09.012.Search in Google Scholar

20. Guan, X.; Yuan, X.; Zhao, Y.; Wang, H.; Wang, H.; Bai, J.; Li, Y. Application of Functionalized Layered Double Hydroxides for Heavy Metal Removal: A Review. Sci. Total Environ. 2022, 838, 155693; https://doi.org/10.1016/j.scitotenv.2022.155693.Search in Google Scholar PubMed

21. Karim, A. V.; Hassani, A.; Eghbali, P.; Nidheesh, P. Nanostructured Modified Layered Double Hydroxides (LDHs)-Based Catalysts: A Review on Synthesis, Characterization, and Applications in Water Remediation by Advanced Oxidation Processes. Curr. Opin. Solid State Mater. Sci. 2022, 26 (1), 100965; https://doi.org/10.1016/j.cossms.2021.100965.Search in Google Scholar

22. Qureshi, S. S.; Javed, M.; Saeed, S.; Abr, R. o.; Mazari, S. A.; Mubarak, N. M.; Siddiqui, M. T. H.; Baloch, H. A.; Nizamuddin, S. Hydrothermal Carbonization of Oil Palm Trunk via Taguchi Method. Korean J. Chem. Eng. 2021, 38 (4), 797–806; https://doi.org/10.1007/s11814-021-0753-0.Search in Google Scholar

23. Lim, G.; Bok, G.; Park, S. D.; Kim, Y. Thermally Conductive Hexagonal Boron Nitride/Spherical Aluminum Oxide Hybrid Composites Fabricated with Epoxyorganosiloxane. Ceram. Int. 2022, 48 (1), 1408–1414; https://doi.org/10.1016/j.ceramint.2021.09.227.Search in Google Scholar

24. Zheng, Z.; Cox, M.; Li, B. Surface Modification of Hexagonal Boron Nitride Nanomaterials: a Review. J. Mater. Sci. 2018, 53 (1), 66–99; https://doi.org/10.1007/s10853-017-1472-0.Search in Google Scholar

25. Li, S. N.; Yu, Z. R.; Guo, B. F.; Guo, K. Y.; Li, Y.; Gong, L. X.; Zhao, L.; Bae, J.; Tang, L. C. Environmentally Stable, Mechanically Flexible, Self-adhesive, and Electrically Conductive Ti3C2TX MXene Hydrogels for Wide-Temperature Strain Sensing. Nano Energy 2021, 90 (A), 106502; https://doi.org/10.1016/j.nanoen.2021.106502.Search in Google Scholar

26. Chen, H. Y.; Chen, Z. Y.; Mao, M.; Wu, Y. Y.; Yang, F.; Gong, L. X.; Zhao, L.; Cao, C. F.; Song, P.; Gao, J. F.; Zhang, G. D.; Shi, Y. Q.; Cao, K.; Tang, L. C. Self-adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities. Adv. Funct. Mater. 2023, 33, 2304927; https://doi.org/10.1002/adfm.202304927.Search in Google Scholar

27. Zhang, X.; Xiang, D.; Zhu, W.; Zheng, Y.; Harkin-Jones, E.; Wang, P.; Zhao, C.; Li, H.; Wang, B.; Li, Y. Flexible and High-Performance Piezoresistive Strain Sensors Based on Carbon Nanoparticles@Polyurethane Sponges. Compos. Sci. Technol. 2020, 200, 108437; https://doi.org/10.1016/j.compscitech.2020.108437.Search in Google Scholar

28. Charara, M.; Luo, W.; Saha, M. C.; Liu, Y. Investigation of Lightweight and Flexible Carbon Nanofiber/Poly Dimethylsiloxane Nanocomposite Sponge for Piezoresistive Sensor Application. Adv. Eng. Mater. 2019, 21, 1–12; https://doi.org/10.1002/adem.201801068.Search in Google Scholar

29. Liu, H.; Gao, H.; Hu, G. Highly Sensitive Natural Rubber/Pristine Graphene Strain Sensor Prepared by a Simple Method. Compos. Part B Eng. 2019, 171, 138–145; https://doi.org/10.1016/j.compositesb.2019.04.032.Search in Google Scholar

30. Nguyen, T.; Dinh, T.; Phan, H. P.; Pham, T. A.; Dau, V. T.; Nguyen, N. T.; Dao, D. V. Advances in Ultrasensitive Piezoresistive Sensors: From Conventional to Flexible and Stretchable Applications. Mater. Horiz. 2021, 8, 2123–2150; https://doi.org/10.1039/d1mh00538c.Search in Google Scholar PubMed

31. Ding, Y.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interfaces 2019, 11, 6685–6704; https://doi.org/10.1021/acsami.8b20929.Search in Google Scholar PubMed

32. Chen, W.; Yan, X. Progress in Achieving High-Performance Piezoresistive and Capacitive Flexible Pressure Sensors: A Review. J. Mater. Sci. Technol. 2020, 43, 175–188; https://doi.org/10.1016/j.jmst.2019.11.010.Search in Google Scholar

33. Cheng, M.; Zhu, G.; Zhang, F.; Tang, W. L.; Jianping, S.; Yang, J. Q.; Zhu, L. Y. A Review of Flexible Force Sensors for Human Health Monitoring. J. Adv. Res. 2020, 26, 53–68; https://doi.org/10.1016/j.jare.2020.07.001.Search in Google Scholar PubMed PubMed Central

34. Zheng, Q.; Lee, J.; Shen, X.; Chen, X.; Kim, J. K. Graphene-based Wearable Piezoresistive Physical Sensors. Mater. Today 2020, 36, 158–179; https://doi.org/10.1016/j.mattod.2019.12.004.Search in Google Scholar

35. Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chem. Eng. J. 2021, 406, 126777; https://doi.org/10.1016/j.cej.2020.126777.Search in Google Scholar

36. Chen, M.; Li, K.; Cheng, G. M.; He, K.; Li, W. W.; Zhang, D. S.; Li, W. M.; Feng, Y.; Wei, L.; Li, W. J.; Zhong, G. H.; Yang, C. L. Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Appl. Mater. Interfaces 2019, 11, 2551–2558; https://doi.org/10.1021/acsami.8b20284.Search in Google Scholar PubMed

37. Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A Highly Flexible and Sensitive Piezoresistive Sensor Based on MXene with Greatly Changed Interlayer Distances. Nat.Commun. 2017, 8, 1207; https://doi.org/10.1038/s41467-017-01136-9.Search in Google Scholar PubMed PubMed Central

38. Bae, S. H.; Lee, Y.; Sharma, B. K.; Lee, H. J.; Kim, J. H.; Ahn, J. H. Graphene-based Transparent Strain Sensor. Carbon 2013, 51, 236–242; https://doi.org/10.1016/j.carbon.2012.08.048.Search in Google Scholar

39. Ma, J. H.; Wang, P.; Chen, H. Y.; Bao, S. J.; Chen, W.; Lu, H. B. Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536; https://doi.org/10.1021/acsami.8b20902.Search in Google Scholar PubMed

40. Zhang, X. W.; Pan, Y.; Zheng, Q.; Yi, X. S. Time Dependence of Piezoresistance for the Conductor‐filled Polymer Composites. J. Polym. Sci., Part B: Polym. Phys. 2000, 38 (21), 2739–2749; https://doi.org/10.1002/1099-0488(20001101)38:21<2739::aid-polb40>3.0.co;2-o.10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-OSearch in Google Scholar

41. Yang, X. D.; Sun, L. Y.; Zhang, C.; Huang, B. C.; Chua, Y. T.; Zhan, B. Modulating the Sensing Behaviors of Poly(styrene-Ethylene-Butylenestyrene)/Carbon Nanotubes with Low-dimensional Fillers for Large Deformation Sensors. Compos. Part B 2019, 160, 605–614; https://doi.org/10.1016/j.compositesb.2018.12.119.Search in Google Scholar

42. Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S. H. Review-recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J. Electrochem. Soc. 2020, 167, 037561–037605; https://doi.org/10.1149/1945-7111/ab6828.Search in Google Scholar

43. Yu, T. T.; Tao, Y. B.; Wu, Y. L.; Zhang, D. G.; Yang, J. Y.; Ge, G. Heterogeneous Multi-Material Flexible Piezoresistive Sensor with High Sensitivity and Wide Measurement Range. Micromachines 2023, 14, 716–727; https://doi.org/10.3390/mi14040716.Search in Google Scholar PubMed PubMed Central

44. Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62; https://doi.org/10.1021/acsnano.7b06251.Search in Google Scholar PubMed

45. Deshmukh, A.; Kovářík, T.; Pasha, S. K. K. State of the Art Recent Progress in Two Dimensional MXenes Based Gas Sensors and Biosensors: A Comprehensive Review. Coord. Chem. Rev. 2020, 424, 213514.10.1016/j.ccr.2020.213514Search in Google Scholar

46. Fan, K. F.; Li, K.; Han, L. W. L.; Yang, Z. J.; Yang, J. J.; Zhang, J. Y.; Cheng, J. Multifunctional Double-Network Ti3C2Tx MXene Composite Hydrogels for Strain Sensors with Effective Electromagnetic Interference and UV Shielding Properties. Polymer 2023, 273, 125865; https://doi.org/10.1016/j.polymer.2023.125865.Search in Google Scholar

47. Qi, X. D.; Zhu, T. Y.; Hu, W. W.; Jiang, W. J.; Yang, J. H.; Lin, Q.; Wang, Y. Multifunctional Polyacrylamide/Hydrated Salt/MXene Phase Change Hydrogels with High Thermal Energy Storage, Photothermal Conversion Capability and Strain Sensitivity for Personal Healthcare. Compos. Sci. Technol. 2023, 234, 109947; https://doi.org/10.1016/j.compscitech.2023.109947.Search in Google Scholar

48. Zhu, T. Y.; Jiang, W. J.; Shi, X.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. MXene/Ag Doped Hydrated-Salt Hydrogels with Excellent Thermal/Light Energy Storage, Strain Sensing and Photothermal Antibacterial Performances for Intelligent Human Healthcare. Compos. Part A. 2023, 170, 107526; https://doi.org/10.1016/j.compositesa.2023.107526.Search in Google Scholar

49. Dong, L. S.; Zhou, X. Y.; Zheng, S. X.; Luo, Z. F.; Nie, Y. X.; Feng, X.; Zhu, J. H.; Wang, Z. Z.; Lu, X. H.; Mu, L. W. Liquid Metal @ MXene Spring Supports Ionic Gel with Excellent Mechanical Properties for High-Sensitivity Wearable Strain Sensor. Chem. Eng. J. 2023, 458, 141370; https://doi.org/10.1016/j.cej.2023.141370.Search in Google Scholar

50. Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and Flexible MXene/carboxymethyl Cellulose Aerogel for Electromagnetic Shielding, Energy Harvest and Self-Powered Sensing. Nano Energy 2022, 98, 107229; https://doi.org/10.1016/j.nanoen.2022.107229.Search in Google Scholar

51. Cheng, Y. F.; Xie, M.; Ma, Y. N.; Wang, M. J.; Zhang, Y. H.; Liu, Z. Y.; Yan, S. W.; Ma, N.; Liu, M. Y.; Yue, Y.; Wang, J. B.; Li, L. Y. Optimization of Ion/Electron Channels Enabled by Multiscale MXene Aerogel for Integrated Self-healable Flexible Energy Storage and Electronic Skin System. Nano Energy 2023, 107, 108131; https://doi.org/10.1016/j.nanoen.2022.108131.Search in Google Scholar

52. Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. N.; Zhang, Z.; Huang, Q.; Gao, Y. H. 3D Hybrid Porous MXene-Sponge Network and its Application in Piezoresistive Sensor. Nano Energy 2018, 50, 79–87; https://doi.org/10.1016/j.nanoen.2018.05.020.Search in Google Scholar

53. Song, D. K.; Li, X. F.; Li, X. P.; Jia, X. Q.; Min, P.; Yu, Z. Z. Hollow-structured MXene-PDMS Composites as Flexible, Wearable and Highly Bendable Sensors with Wide Working Range. J. Colloid Interface Sci. 2019, 555, 751–758; https://doi.org/10.1016/j.jcis.2019.08.020.Search in Google Scholar PubMed

54. Su, T. Y.; Liu, N. H.; Gao, Y. H.; Lei, D. D.; Wang, L. X.; Ren, Z. Q.; Zhang, Q. X.; Su, J.; Zhang, Z. MXene/Cellulose Nanofiber-Foam Based High Performance Degradable Piezoresistive Sensor with Greatly Expanded Interlayer Distances. Nano Energy 2021, 87, 106151; https://doi.org/10.1016/j.nanoen.2021.106151.Search in Google Scholar

55. Zhai, W.; Xia, Q.; Zhou, K.; Yue, X.; Ren, M.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Multifunctional Flexible Carbon Black/Polydimethylsiloxane Piezoresistive Sensor with Ultrahigh Linear Range, Excellent Durability and Oil/water Separation Capability. Chem. Eng. J. 2019, 372, 373–382; https://doi.org/10.1016/j.cej.2019.04.142.Search in Google Scholar

56. Cao, M.; Fan, S.; Qiu, H.; Su, D.; Li, L.; Su, J. CB Nanoparticles Optimized 3D Wearable Graphene Multifunctional Piezoresistive Sensor Framed by Loofah Sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547; https://doi.org/10.1021/acsami.0c09813.Search in Google Scholar PubMed

57. Zhai, Y.; Yu, Y.; Zhou, K.; Yun, Z.; Huang, W.; Liu, H.; Xia, Q.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. Flexible and Wearable Carbon Black/Thermoplastic Polyurethane Foam with a Pinnate-Veined Aligned Porous Structure for Multifunctional Piezoresistive Sensors. Chem. Eng. J. 2020, 382, 122985; https://doi.org/10.1016/j.cej.2019.122985.Search in Google Scholar

58. Yang, Y. P.; Kong, L. L.; Lu, J. J.; Lin, B. F.; Fu, L. H.; Xu, C. H. A Highly Conductive MXene-Based Rubber Composite with Relatively Stable Conductivity under Small Deformation and High Sensing Sensitivity at Large Strain. Compos. Part A. 2023, 170, 107545; https://doi.org/10.1016/j.compositesa.2023.107545.Search in Google Scholar

59. Taromsari, S. M.; Shi, H. T. H.; Saadatnia, Z.; Park, C. B.; Naguib, H. E. Design and Development of Ultra-sensitive, Dynamically Stable, Multi-modal GnP@MXene Nanohybrid Electrospun Strain Sensors. Chem. Eng. J. 2022, 442, 136138.10.1016/j.cej.2022.136138Search in Google Scholar

60. Zhang, L.; Zhang, X. Y.; Zhang, H. Y.; Xu, L. Q.; Wang, D.; Lu, X. Y.; Zhang, A. M. Semi-embedded Robust MXene/AgNW Sensor with Self-Healing, High Sensitivity and a Wide Range for Motion Detection. Chem. Eng. J. 2022, 434, 134751; https://doi.org/10.1016/j.cej.2022.134751.Search in Google Scholar

61. Li, X. X.; Yang, J. Z.; Yuan, W. J.; Ji, P. G.; Xu, Z. B.; Shi, S. N.; Han, X. J.; Niu, W. X.; Yin, F. Microstructured MXene/Polyurethane Fibrous Membrane for Highly Sensitive Strain Sensing with Ultra-wide and Tunable Sensing Range. Compos. Commun. 2021, 23, 100586; https://doi.org/10.1016/j.coco.2020.100586.Search in Google Scholar

62. Miao, C. J.; Cui, X. Y.; Sun, J. C.; Lu, S. W.; Liu, X. M. High Flexibility and Wide Sensing Range Human Health Monitoring Sensors Based on Ti3C2Tx MXene/CNTs/WPU/CNFs Composite Ink Film. Mater. Sci. Semicond. Process. 2023, 158, 107384; https://doi.org/10.1016/j.mssp.2023.107384.Search in Google Scholar

63. Jian, M. Q.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Adv. Funct. Mater. 2017, 27, 1606066; https://doi.org/10.1002/adfm.201606066.Search in Google Scholar

64. Nie, Z.; Peng, K. L.; Lin, L. Z.; Yang, J. Y.; Cheng, Z. K.; Gan, Q.; Chen, Y.; Feng, C. G. A Conductive Hydrogel Based on Nature Polymer Agar with Self-Healingability and Stretchability for Flexible Sensors. Chem. Eng. J. 2023, 454, 139843; https://doi.org/10.1016/j.cej.2022.139843.Search in Google Scholar

65. Peng, Z. Q.; Zhang, X. D.; Zhao, C. M.; Gan, C. S.; Zhu, C. H. Hydrophobic and Stable MXene/Reduced Graphene Oxide/polymer Hybrid Materials Pressure Sensors with an Ultrahigh Sensitive and Rapid Response Speed Pressure Sensor for Health Monitoring. Mater. Chem. Phys. 2021, 271, 124729; https://doi.org/10.1016/j.matchemphys.2021.124729.Search in Google Scholar

66. Qi, Z. L.; Zhang, T. W.; Zhang, X. D.; Xu, Q.; Cao, K.; Chen, R. MXene-based Flexible Pressure Sensor with Piezoresistive Properties Significantly Enhanced by Atomic Layer Infiltration. Nano Mater. Sci. 2023, 5 (4), 4439–4446; https://doi.org/10.1016/j.nanoms.2022.10.003.Search in Google Scholar

67. Lin, C. H.; Luo, S. H.; Meng, F. C.; Xu, B.; Long, T.; Zhao, Y. X.; Hu, H. B.; Zheng, L. X.; Liao, K.; Liu, J. H. MXene/Air-Laid Paper Composite Sensors for Both Tensile and Torsional Deformations Detection. Compos. Commun. 2021, 25, 100768; https://doi.org/10.1016/j.coco.2021.100768.Search in Google Scholar

68. Bu, Y. B.; Shen, T. Y.; Yang, W. K.; Yang, S. Y.; Zhao, Y.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Ultrasensitive Strain Sensor Based on Superhydrophobic Microcracked Conductive Ti3C2Tx MXene/Paper for Human-Motion Monitoring and E-Skin. Sci. Bull. 2021, 66, 1849–1857; https://doi.org/10.1016/j.scib.2021.04.041.Search in Google Scholar PubMed

69. Chen, Y. X.; Fu, X. L.; Jiang, Y.; Feng, W. Q.; Yu, D.; Wang, W. Highly Sensitive and Durable MXene/SBS Nanofiber-Based Multifunctional Sensors via Thiol-Ene Click Chemistry. Chem. Eng. J. 2023, 467, 143408; https://doi.org/10.1016/j.cej.2023.143408.Search in Google Scholar

70. Cheng, Y. F.; Xie, Y. M.; Cao, H. H.; Li, L.; Liu, Z. Y.; Yan, S. W.; Ma, Y. N.; Liu, W. J.; Yue, Y.; Wang, J. B.; Gao, Y. H.; Li, L. Y. High-strength MXene Sheets through Interlayer Hydrogen Bonding for Self-Healing Flexible Pressure Sensor. Chem. Eng. J. 2023, 453, 139823; https://doi.org/10.1016/j.cej.2022.139823.Search in Google Scholar

71. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/Cotton Fabric-Based Pressure Sensor with Both High Sensitivity and Wide Sensing Range for Human Motion Detection and E-Skin. Chem. Eng. J. 2021, 420, 127720; https://doi.org/10.1016/j.cej.2020.127720.Search in Google Scholar

72. Yuan, L.; Zhang, M.; Zhao, T. T.; Li, T. K.; Zhang, H.; Chen, L. L.; Zhan, J. H. Flexible and Breathable Strain Sensor with High Performance Based on MXene/Nylon Fabric Network. Sens. Actuat. A 2020, 315, 112192; https://doi.org/10.1016/j.sna.2020.112192.Search in Google Scholar

73. Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs Based Flexible Electronic Textile with Excellent Strain Sensing, Electromagnetic Interference Shielding and Joule Heating Performances. Chem. Eng. J. 2022, 438, 135587; https://doi.org/10.1016/j.cej.2022.135587.Search in Google Scholar

74. Xu, H.; Wang, D. Y.; Zheng, Y. Q.; Liu, L. C.; Wang, X. B.; Han, W.; Wang, L. L. Egg Shell-Inspired High-Deformation MXene Biocomposite for Flexible Device. Microelectron. Eng. 2022, 264, 111869; https://doi.org/10.1016/j.mee.2022.111869.Search in Google Scholar

75. Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13 (8), 8491–8494; https://doi.org/10.1021/acsnano.9b06394.Search in Google Scholar PubMed

76. Yang, Y. N.; Cao, Z. R.; He, P.; Shi, L. J.; Ding, G. Q.; Wang, R. R.; Sun, J. Ti3C2Tx MXene-Graphene Composite Films for Wearable Strain Sensors Featured with High Sensitivity and Large Range of Linear Response. Nano Energy 2019, 66, 104134; https://doi.org/10.1016/j.nanoen.2019.104134.Search in Google Scholar

77. Li, L.; Cheng, Y. F.; Cao, H. H.; Liang, Z. S.; Liu, Z. Y.; Yan, S. W.; Li, L. Y.; Jia, S. F.; Wang, J. B.; Gao, Y. H. MXene/rGO/PS Spheres Multiple Physical Networks as High-Performance Pressure Sensor. Nano Energy 2022, 95, 106986; https://doi.org/10.1016/j.nanoen.2022.106986.Search in Google Scholar

78. Chang, K. Q.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Compressible and Robust PANI Sponge Anchored with Erected MXene Flakes for Human Motion Detection. Compos. Part A. 2021, 151, 106671; https://doi.org/10.1016/j.compositesa.2021.106671.Search in Google Scholar

79. Song, D. K.; Zeng, M. J.; Min, P.; Jia, X. Q.; Gao, F. L.; Yu, Z. Z.; Li, X. F. Electrically Conductive and Highly Compressible Anisotropic MXene-Wood Sponges for Multifunctional and Integrated Wearable Devices. J Mater. Sci. Technol. 2023, 144, 102–110; https://doi.org/10.1016/j.jmst.2022.09.050.Search in Google Scholar

80. Chen, Y. X.; Jiang, Y.; Feng, W. Q.; Wang, W.; Yu, D. Construction of Sensitive Strain Sensing Nanofibrous Membrane with Polydopamine-Modified MXene/CNT Dual Conductive Network. Colloid. Surface A. 2022, 635, 128055; https://doi.org/10.1016/j.colsurfa.2021.128055.Search in Google Scholar

81. Sharifuzzaman, M.; Chhetry, A.; Zahed, M. A.; Yoon, S. H.; Park, C. I.; Zhang, S. P.; Barman, S. C.; Sharma, S.; Yoon, H.; Yeong, J. Park Smart Bandage with Integrated Multifunctional Sensors Based on MXene-Functionalized Porous Graphene Scaffold for Chronic Wound Care Management. Biosens. Bioelectron. 2020, 169, 112637; https://doi.org/10.1016/j.bios.2020.112637.Search in Google Scholar PubMed

82. Xu, B. B.; Ye, F.; Chen, R. H.; Luo, X. G.; Chang, G. T.; Li, R. X. A Wide Sensing Range and High Sensitivity Flexible Strain Sensor Based on Carbon Nanotubes and MXene. Ceram. Int. 2022, 48, 10220; https://doi.org/10.1016/j.ceramint.2021.12.235.Search in Google Scholar

83. Wu, L.; Xu, C.; Fan, M. S.; Tang, P.; Zhang, R.; Yang, S. T.; Pan, L. J.; Bin, Y. Z. Lotus Root Structure-Inspired Ti3C2-MXene-Based Flexible and Wearable Strain Sensor with Ultra-high Sensitivity and Wide Sensing Range. Compos. Part A. 2022, 152, 106702; https://doi.org/10.1016/j.compositesa.2021.106702.Search in Google Scholar

84. Yang, Z. P.; Li, H. Q.; Zhang, S. F.; Lai, X. J.; Zeng, X. R. Superhydrophobic MXene@ Carboxylated Carbon Nanotubes/carboxymethyl Chitosan Aerogel for Piezoresistive Pressure Sensor. Chem. Eng. J. 2021, 425, 130462; https://doi.org/10.1016/j.cej.2021.130462.Search in Google Scholar

85. Yu, C. X.; Xu, J. W.; Yang, L.; Ye, M.; Ye, Y. S.; Li, T. L.; Zhang, Y. M.; Zhang, Z. W.; Xu, H. R.; Tan, H.; Zhang, G. Z.; Zhang, H. B. Self-driving Flexible Piezoresisti Ve Sensors Integrated with Enhanced Energy Harvesting Sensor of ZnO/Ti3C2Tx Nanocomposite Based on 3D Structure. J. Alloys Compd. 2023, 956, 170358; https://doi.org/10.1016/j.jallcom.2023.170358.Search in Google Scholar

86. Shekh, M.; Zhu, G. M.; Xiong, W.; Wu, W. L.; Stadler, F.; Patel, D.; Zhu, C. T. Dynamically Bonded, Tough, and Conductive MXene@oxidized Sodium Alginate: Chitosan Based Multi-Networked Elastomeric Hydrogels for Physical Motion Detection. Int. J. Biol. Macromol. 2023, 224, 604–620; https://doi.org/10.1016/j.ijbiomac.2022.10.150.Search in Google Scholar PubMed

87. Wang, S.; Du, X. S.; Luo, Y. F.; Lin, S. Y.; Zhou, M.; Du, Z. L.; Cheng, X.; Wang, H. B. Hierarchical Design of Waterproof, Highly Sensitive, and Wearable Sensing Electronics Based on MXene-Reinforced Durable Cotton Fabrics. Chem. Eng. J. 2021, 408, 127363; https://doi.org/10.1016/j.cej.2020.127363.Search in Google Scholar

88. Xie, M. H.; Li, S. X.; Qi, X. M.; Chi, Z. Y.; Shen, L. T.; Islam, Z.; Dong, Y. B. Thermal and Infrared Light Self-Repairing, High Sensitivity, and Large Strain Sensing Range Shape Memory MXene/CNTs/EVA Composites Fiber Strain Sensor for Human Motion Monitoring. Sens. Actuator A. Phys. 2022, 347, 113939; https://doi.org/10.1016/j.sna.2022.113939.Search in Google Scholar

89. Yang, M.; Yang, Z. J.; Lv, C.; Wang, Z.; Lu, Z.; Lu, G. Y.; Jia, X. T.; Wang, C. Electrospun Bifunctional MXene-Based Electronic Skins with High Performance Electromagnetic Shielding and Pressure Sensing. Compos. Sci. Technol. 2022, 221, 109313; https://doi.org/10.1016/j.compscitech.2022.109313.Search in Google Scholar

90. Jia, G. W.; Zheng, A.; Wang, X.; Zhang, L.; Li, L.; Li, C. X.; Zhang, Y.; Cao, L. Y. Flexible, Biocompatible and Highly Conductive MXene-Graphene Oxide Film for Smart Actuator and Humidity Sensor. Sens. Actuators B Chem. 2021, 346, 130507; https://doi.org/10.1016/j.snb.2021.130507.Search in Google Scholar

91. Zhang, L.; Lu, Y.; Lu, S. W.; Zhang, H.; Zhao, Z. P.; Ma, C. K.; Ma, K. M.; Wang, X. Q. Lifetime Health Monitoring of Fiber Reinforced Composites Using Highly Flexible and Sensitive MXene/CNT Film Sensor. Sens. Actuators A Phys. 2021, 332, 113148; https://doi.org/10.1016/j.sna.2021.113148.Search in Google Scholar

92. Pu, J. H.; Zhao, X.; Zha, X. J.; Li, W. D.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. A Strain Localization Directed Crack Control Strategy for Designing MXene-Based Customizable Sensitivity and Sensing Range Strain Sensors for Full-Range Human Motion Monitoring. Nano Energy 2020, 74, 104814; https://doi.org/10.1016/j.nanoen.2020.104814.Search in Google Scholar

93. Li, X.; Lu, Y. L.; Shi, Z. H.; Liu, G.; Xu, G.; An, Z. J.; Xing, H.; Chen, Q. M.; Han, R. P. S.; Liu, Q. J. Onion-inspired MXene/chitosan-Quercetin Multilayers: Enhanced Response to H2O Molecules for Wearable Human Physiological Monitoring. Sens. Actuators B. Chem. 2021, 329, 129209; https://doi.org/10.1016/j.snb.2020.129209.Search in Google Scholar

94. Jia, Z. X.; Li, Z. J.; Ma, S. F.; Zhang, W. Q.; Chen, Y. J.; Luo, Y. F.; Jia, D. M.; Zhong, B. C.; Razal, J. M.; Wang, X. G.; Kong, L. X. Constructing Conductive Titanium Carbide Nanosheet (MXene) Network on Polyurethane/Polyacrylonitrile Fibre Framework for Flexible Strain Sensor. J. Colloid Interface Sci. 2021, 584, 1–10; https://doi.org/10.1016/j.jcis.2020.09.035.Search in Google Scholar PubMed

95. Wang, Z.; Liu, Y. T.; Zhang, D. J.; Zhang, K. M.; Gao, C. H.; Wu, Y. M. Tough, Stretchable and Self-Healing C-MXenes/PDMS Conductive Composites as Sensitive Strain Sensors. Compos. Sci. Technol. 2021, 216, 109042; https://doi.org/10.1016/j.compscitech.2021.109042.Search in Google Scholar

96. Qin, M.; Yuan, W. F.; Zhang, X. M.; Cheng, Y. Z.; Xu, M. J.; Wei, Y.; Chen, W. Y.; Huang, D. Preparation of PAA/PAM/MXene/TA Hydrogel with Antioxidant, Healable Ability as Strain Sensor. Colloids. Surf. B. 2022, 214, 112482; https://doi.org/10.1016/j.colsurfb.2022.112482.Search in Google Scholar PubMed

97. Qin, R. Z.; Li, X.; Hu, M. J.; Shan, G. G.; Seeram, R.; Yin, M. Preparation of High-Performance MXene/PVA-Based Flexible Pressure Sensors with Adjustable Sensitivity and Sensing Range. Sens. Actuator A Phys. 2022, 338, 113458; https://doi.org/10.1016/j.sna.2022.113458.Search in Google Scholar

98. Chen, Q.; Gao, Q. S.; Wang, X.; Schubert, D. W.; Liu, X. H. Flexible, Conductive, and Anisotropic Thermoplastic Polyurethane/Polydopamine/MXene Foam for Piezoresistive Sensors and Motion Monitoring. Compos. Part A. 2022, 155, 106838; https://doi.org/10.1016/j.compositesa.2022.106838.Search in Google Scholar

99. Jiang, X. W.; Ma, K. M.; Lu, S. W.; Zhang, L.; Wang, Z.; Guo, Y. L.; Wang, X. Q.; Zhao, Z. P.; Qu, X. Q.; Lu, Y. Structure Bolt Tightening Force and Loosening Monitoring by Conductive MXene/FPC Pressure Sensor with High Sensitivity and Wide Sensing Range. Sens. Actuator A. 2021, 331, 113005; https://doi.org/10.1016/j.sna.2021.113005.Search in Google Scholar

100. Chao, M. Y.; Wang, Y. G.; Ma, D.; Wu, X. X.; Zhang, W. X.; Zhang, L. Q.; Wan, P. B. Wearable MXene Nanocomposites-Based Strain Sensor with Tile-like Stacked Hierarchical Microstructure for Broad-Range Ultrasensitive Sensing. Nano Energy 2020, 78, 105187; https://doi.org/10.1016/j.nanoen.2020.105187.Search in Google Scholar

101. Ma, Z.; Ma, K. M.; Lu, S. W.; Wang, S.; Liu, X. M.; Li, B. H.; Zhang, L.; Wang, X. Q. Flexible Ti3C2Tx MXene/ink Human Wearable Strain Sensors with High Sensitivity and a Wide Sensing Range. Sens. Actuator A. 2020, 315, 112304; https://doi.org/10.1016/j.sna.2020.112304.Search in Google Scholar

102. Wang, S.; Shao, H. Q.; Liu, Y.; Tang, C. Y.; Zhao, X.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. Boosting Piezoelectric Response of PVDF-TrFE via MXene for Self-POWERED Linear Pressure Sensor. Compos. Sci. Technol. 2021, 202, 108600; https://doi.org/10.1016/j.compscitech.2020.108600.Search in Google Scholar

103. Chen, B. D.; Zhang, L.; Li, H. Q.; Lai, X. J.; Zeng, X. R. Skin-inspired Flexible and High-Performance MXene@polydimethylsiloxane Piezoresistive Pressure Sensor for Human Motion Detection. J. Colloid Interface Sci. 2022, 617, 478–488; https://doi.org/10.1016/j.jcis.2022.03.013.Search in Google Scholar PubMed

104. He, Y.; Deng, Z. P.; Wang, Y. J.; Zhao, Y. P.; Chen, L. Polysaccharide/Ti3C2Tx MXene Adhesive Hydrogels with Self-Healing Ability for Multifunctional and Sensitive Sensors. Carbohydr. Polym. 2022, 291, 119572; https://doi.org/10.1016/j.carbpol.2022.119572.Search in Google Scholar PubMed

105. Yang, Y. C.; Song, W. M.; Murugesan, B.; Cheng, X. W.; Jiang, M. M.; Chen, Z.; Yan, B. F.; Cai, Y. R. Oriented Ti3C2Tx MXene-Doped Silk Fibroin/hyaluronic Acid Hydrogels for Sensitive Compression Strain Monitoring with a Wide Resilience Range and High Cycling Stability. Colloid Surface. A. 2023, 665, 131221; https://doi.org/10.1016/j.colsurfa.2023.131221.Search in Google Scholar

106. Chen, T. D.; Yang, G. C.; Li, Y. Y.; Li, Z. P.; Ma, L. M.; Yang, S. R.; Wang, J. Q. Temperature-adaptable Pressure Sensors Based on MXene-Coated GO Hierarchical Aerogels with Superb Detection Capability. Carbon 2022, 200, 47–55; https://doi.org/10.1016/j.carbon.2022.08.002.Search in Google Scholar

107. Qin, Z.; Chen, X. Y.; Lv, Y. H.; Zhao, B.; Fang, X. H.; Pan, K. Wearable and High-Performance Piezoresistive Sensor Based on Nanofiber/sodium Alginate Synergistically Enhanced MXene Composite Aerogel. Chem. Eng. J. 2023, 451, 138586; https://doi.org/10.1016/j.cej.2022.138586.Search in Google Scholar

108. Li, W. W.; Fan, Q.; Chai, C. X.; Chu, Y. R.; Hao, J. C. Ti3C2-MXene Ion-Gel with Long-Term Stability and High Sensitivity for Wearable Piezoresistive Sensors. Colloid Surface. A 2023, 665, 131202; https://doi.org/10.1016/j.colsurfa.2023.131202.Search in Google Scholar

109. Cheng, H. N.; Yang, C.; Chu, J. Y.; Zhou, H. S.; Wang, C. X. Multifunctional Ti3C2Tx MXene/nanospheres/Ti3C2Tx MXene/Thermoplastic Polyurethane Electrospinning Membrane Inspired by Bean Pod Structure for EMI Shielding and Pressure Sensing. Sens. Actuator A. Phys. 2023, 353, 114226; https://doi.org/10.1016/j.sna.2023.114226.Search in Google Scholar

110. Zheng, X. H.; Wang, P.; Zhang, X. S.; Hu, Q. L.; Wang, Z. Q.; Nie, W. Q.; Zou, L. H.; Li, C. L.; Han, X. Breathable, Durable and Bark -shaped MXene/Textiles for High-Performance Wearable Pressure Sensors, EMI Shielding and Heat Physiotherapy. Compos. Part A. 2022, 152, 106700; https://doi.org/10.1016/j.compositesa.2021.106700.Search in Google Scholar

111. Li, X. X.; Yang, M.; Qin, W. J.; Gu, C. S.; Feng, L.; Tian, Z. H.; Qiao, H. Y.; Chen, J. J.; Chen, J. X.; Yin, S. G. MXene-based Multilayered Flexible Strain Sensor Integrating Electromagnetic Shielding and Joule Heat. Colloid. Surface A. 2023, 658, 130706; https://doi.org/10.1016/j.colsurfa.2022.130706.Search in Google Scholar

112. Santos, A. D.; Pinela, N.; Alves, P.; Santos, R.; Fortunato, E.; Martins, R.; Aguas, H., Igreja´, R. Piezoresistive E-Skin Sensors Produced with Laser Engraved Molds. Adv. Electron. Mater. 2018, 4, 1–10.10.1002/aelm.201800182Search in Google Scholar

113. Cao, Y.; Li, T.; Gu, Y.; Luo, H.; Wang, S.; Zhang, T. Fingerprint-inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture. Small 2018, 14, 1–9; https://doi.org/10.1002/smll.201703902.Search in Google Scholar PubMed

114. Khalili, N.; Shen, X.; Naguib, H. E. An Interlocked Flexible Piezoresistive Sensor with 3D Micropyramidal Structures for Electronic Skin Applications. Soft Matter 2018, 14, 6912–6920; https://doi.org/10.1039/c8sm00897c.Search in Google Scholar PubMed

115. Yan, J.; Ma, Y.; Jia, G.; Zhao, S.; Yue, Y.; Cheng, F.; Zhang, C.; Cao, M.; Xiong, Y.; Shen, P.; Gao, Y. Bionic MXene Based Hybrid Film Design for an Ultrasensitive Piezoresistive Pressure Sensor. Chem. Eng. J. 2022, 431, 133458; https://doi.org/10.1016/j.cej.2021.133458.Search in Google Scholar

116. Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C. F. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors 2014, 14, 5296–5332; https://doi.org/10.3390/s140305296.Search in Google Scholar PubMed PubMed Central

117. Thouti, E.; Nagaraju, A.; Chandran, A.; Prakash, P. V. B. S. S.; Shivanarayanamurthy, P.; Lal, B.; Kumar, P.; Kothari, P.; Panwar, D. Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-pyramids for Bio-Signal Monitoring. Sens. Actuators, A Phys. 2020, 314, 112251; https://doi.org/10.1016/j.sna.2020.112251.Search in Google Scholar

118. Jung, Y.; Jung, K. K.; Kim, D. H.; Kwak, D. H.; Ahn, S.; Han, J. S.; Ko, J. S. Flexible and Highly Sensitive Three-axis Pressure Sensors Based on Carbon Nanotube/Polydimethylsiloxane Composite Pyramid Arrays. Sens. Actuators A Phys. 2021, 331, 113034; https://doi.org/10.1016/j.sna.2021.113034.Search in Google Scholar

119. Li, G.; Chen, D.; Li, C.; Liu, W.; Liu, H. Engineered Microstructure Derived Hierarchical Deformation of Flexible Pressure Sensor Induces a Supersensitive Piezoresistive Property in Broad Pressure Range. Adv. Sci. 2020, 7, 1–10; https://doi.org/10.1002/advs.202000154.Search in Google Scholar PubMed PubMed Central

120. Zhang, J.; Zhou, L. J.; Zhang, H. M.; Zhao, Z. X.; Dong, S. L.; Wei, S.; Zhao, J.; Wang, Z. L.; Guo, B.; Hu, P. A. Highly Sensitive Flexible Three-axis Tactile Sensors Based on the Interface Contact Resistance of Microstructured Graphene. Nanoscale 2018, 10, 7387–7395; https://doi.org/10.1039/c7nr09149d.Search in Google Scholar PubMed

121. Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220; https://doi.org/10.1021/acsami.0c22938.Search in Google Scholar PubMed

122. Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim, D. H.; Chung, Y.; Cho, K. Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array. Adv. Mater. 2016, 28 (26), 5300–5306; https://doi.org/10.1002/adma.201600408.Search in Google Scholar PubMed

123. Lin, L. Y.; Wang, X. Q.; Yang, B.; Zhang, L.; Zhao, Z. P.; Qu, X. Q.; Lu, Y.; Jiang, X. W.; Lu, S. W. Condition Monitoring of Composite Overwrap Pressure Vessels Based on Buckypaper Sensor and MXene Sensor. Compos. Commun. 2021, 25, 100699; https://doi.org/10.1016/j.coco.2021.100699.Search in Google Scholar

124. Fan, Q.; Yi, M. J.; Chai, C. X.; Li, W. W.; Qi, P.; Wang, J. H.; Hao, J. C. Oxidation Stability Enhanced MXene-Based Porous Materials Derived from Water-In-Ionic Liquid Pickering Emulsions for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. J. Colloid Interface Sci. 2022, 618, 311–321; https://doi.org/10.1016/j.jcis.2022.03.073.Search in Google Scholar PubMed

125. Ge, Y. H.; Zeng, J. X.; Hu, B.; Yang, D. Y.; Shao, Y. Z.; Lu, H. B. Bioinspired Flexible Film as Intelligent Moisture-Responsive, Actuators and Noncontact Sensors. Giant 2022, 11, 100107; https://doi.org/10.1016/j.giant.2022.100107.Search in Google Scholar

126. Chao, M. Y.; Di, P. J.; Yuan, Y.; Xu, Y. J.; Zhang, L. Q.; Wan, P. B. Flexible Breathable Photothermal-Therapy Epidermic Sensor with MXene for Ultrasensitive Wearable Human-Machine Interaction. Nano Energy 2023, 108, 108201; https://doi.org/10.1016/j.nanoen.2023.108201.Search in Google Scholar

127. Wang, Y. L.; Qin, W. J.; Hu, X. Y.; Liu, Z. S.; Ren, Z. X.; Cao, H. Q.; An, B. G.; Zhou, X.; Shafiq, M.; Yin, S. G.; Liu, Z. F. Hierarchically Buckled Ti3C2Tx MXene/carbon Nanotubes Strain Sensor with Improved Linearity, Sensitivity, and Strain Range for Soft Robotics and Epidermal Monitoring. Sens. Actuators B Chem. 2022, 368, 132228; https://doi.org/10.1016/j.snb.2022.132228.Search in Google Scholar

128. Zhang, L.; Qu, X. Q.; Lu, S. W.; Wang, X. Q.; Lin, L. Y.; Zhao, Z. P.; Lu, Y.; Ma, C. K. Temperature and Strain Monitor of COPV by Buckypaper and MXene Sensor Combined Flexible Printed Circuit. Int. J Hydrogen Energ. 2022, 47, 4211–4221; https://doi.org/10.1016/j.ijhydene.2021.10.242.Search in Google Scholar

129. Wang, H. B.; Xiang, J.; Wen, X.; Du, X. S.; Wang, Y.; Du, Z. L.; Cheng, X.; Wang, S. Multifunctional Skin-Inspired Resilient MXene-Embedded Nanocomposite Hydrogels for Wireless Wearable Electronics. Compos. Part A. 2022, 155, 106835; https://doi.org/10.1016/j.compositesa.2022.106835.Search in Google Scholar

130. Fu, W. L.; Wang, Q.; Liu, H.; Cao, J. M.; Xu, J. Y.; Yuan, X. G.; Zhang, Y. A.; Ren, X. M. Highly Stretchable and Conductive MXene/Polyurethane Composite Film coated on Various Flexible Substrates for Ultrasensitive Strain Sensors. Mater. Lett. 2022, 320, 132328; https://doi.org/10.1016/j.matlet.2022.132328.Search in Google Scholar

131. Wang, J.; Dai, T. Y.; Zhou, Y. C.; Mohamed, A.; Yuan, G. L.; Jia, H. B. Adhesive and High-Sensitivity Modified Ti3C2TX (MXene)-Based Organo Hydrogels with Wide Work Temperature Range for Wearable Sensors. J. Colloid Interface Sci. 2022, 613, 94–102; https://doi.org/10.1016/j.jcis.2022.01.021.Search in Google Scholar PubMed

132. Zhang, Z. N.; Weng, L.; Guo, K.; Guan, L. Z.; Wang, X. M.; Wu, Z. J. Durable and Highly Sensitive Flexible Sensors for Wearable Electronic Devices with PDMS-MXene/TPU Composite Films. Ceram. Int. 2022, 48, 4977–4985; https://doi.org/10.1016/j.ceramint.2021.11.035.Search in Google Scholar

133. Ma, J. L.; Yang, K.; Jiang, Y.; Shen, L. X.; Ma, H. T.; Cui, Z. W.; Du, Y. H.; Lin, J. B.; Liu, J. S.; Zhu, N. Integrating MXene Waste Materials into Value Added Products for Smart Wearable Self-Powered Healthcare Monitoring. Cell Rep. Phys. Sci. 2022, 3, 100908; https://doi.org/10.1016/j.xcrp.2022.100908.Search in Google Scholar

134. Huang, C.; Luo, Q.; Miao, Q. Q.; He, Z. J.; Fan, P.; Chen, Y. H.; Zhang, Q.; He, X.; Li, L.; Liu, X. G. MXene-based Double-Network Organohydrogel with Excellent Stretchability, High Toughness, Anti-drying and Wide Sensing Linearity for Strain Sensor. Polymer 2022, 253, 124993; https://doi.org/10.1016/j.polymer.2022.124993.Search in Google Scholar

135. Shu, J.; Gao, L.; Li, Y.; Wang, P. W.; Deng, X. Y.; Yan, X. W.; Qu, K. G.; Li, L. MXene/Tissue Paper Composites for Wearable Pressure Sensors and Thermotherapy Electronics. Thin Solid Films 2022, 743, 139054; https://doi.org/10.1016/j.tsf.2021.139054.Search in Google Scholar

136. Geng, L. H.; Liu, W.; Fan, B. B.; Wu, J. M.; Shi, S.; Huang, A.; Hu, J. L.; Peng, X. F. Anisotropic Double-Network Hydrogels Integrated Superior Performance of Strength, Toughness and Conductivity for Flexible Multi-Functional Sensors. Chem. Eng. J. 2023, 462, 142226; https://doi.org/10.1016/j.cej.2023.142226.Search in Google Scholar

137. Yang, M. Y.; Huang, M. L.; Li, Y. Z.; Feng, Z. S.; Huang, Y.; Chen, H. J.; Xu, Z. Q.; Liu, H. G.; Wang, Y. Printing Assembly of Flexible Devices with Oxidation Stable MXene for High Performance Humidity Sensing Applications. Sens. Actuators B Chem. 2022, 364, 131867; https://doi.org/10.1016/j.snb.2022.131867.Search in Google Scholar

138. Guan, M.; Liu, Y.; Du, H.; Long, Y. Y.; An, X. Y.; Liu, H. B.; Cheng, B. W. Durable, Breathable, Sweat-Resistant, and Degradable Flexible Sensors for Human Motion Detection. Chem. Eng. J. 2023, 462, 142151; https://doi.org/10.1016/j.cej.2023.142151.Search in Google Scholar

139. Wang, X. M.; Wang, X. L.; Yin, J. J.; Li, N.; Zhang, Z. L.; Xu, Y. W.; Zhang, L. X.; Qin, Z. H.; Jiao, T. F. Mechanically Robust, Degradable and Conductive MXene-Composited Gelatin Organohydrogel with Environmental Stability and Self-Adhesiveness for Multifunctional Sensor. Compos. Part B. 2022, 241, 110052; https://doi.org/10.1016/j.compositesb.2022.110052.Search in Google Scholar

140. Ye, C. N.; Yan, F.; Lan, X. H.; Rudolf, P.; Voet, V. S. D.; Folkersma, R.; Loos, K. Novel MXene Sensors Based on Fast Healing Vitrimers. Appl. Mater. Today 2022, 29, 101683; https://doi.org/10.1016/j.apmt.2022.101683.Search in Google Scholar

141. Shi, Z. H.; Dai, C. B.; Deng, P. X.; Li, X.; Wu, Y.; Lv, J. J.; Xiong, C. H.; Shuai, Y. F.; Zhang, F. N.; Wang, D.; Liang, H.; He, Y.; Chen, Q. M.; Lu, Y. L.; Liu, Q. J. Wearable Battery-free Smart Bandage with Peptide Functionalized Biosensors Based on MXene for Bacterial Wound Infection Detection. Sens. Actuators B. Chem. 2023, 383, 133598; https://doi.org/10.1016/j.snb.2023.133598.Search in Google Scholar

142. Han, M. M.; Shen, W. H. Nacre-inspired Cellulose nanofiber/MXene Flexible Composite Film with Mechanical Robustness for Humidity Sensing. Carbohydr. Polym. 2022, 298, 120109; https://doi.org/10.1016/j.carbpol.2022.120109.Search in Google Scholar PubMed

143. Zhao, H. J.; Chen, H. Z.; Yang, M. J.; Li, Y. Facile Fabrication of Poly (Diallyldimethyl Ammonium chloride)/Ti3C2Tx/Poly (Vinylidene Fluoride) 3D Hollow Fiber Membrane Flexible Humidity Sensor and its Application in the Monitoring of Health-Related Physiological Activity. Sens. Actuators B. Chem. 2023, 374, 132773; https://doi.org/10.1016/j.snb.2022.132773.Search in Google Scholar

144. Liu, Y. C. Y.; Sheng, Z.; Huang, J. L.; Liu, W. Y.; Ding, H. Y.; Peng, J. F.; Zhong, B.; Sun, Y. H.; Ouyang, X. P.; Cheng, H. Y.; Wang, X. F. Moisture-resistant MXene-Sodium Alginate Sponges with Sustained Super Hydrophobicity for Monitoring Human Activities. Chem. Eng. J. 2022, 432, 134370; https://doi.org/10.1016/j.cej.2021.134370.Search in Google Scholar PubMed PubMed Central

145. Sun, G. F.; Wang, P.; Jiang, Y. X.; Sun, H. C.; Liu, T.; Li, G. X.; Yu, W.; Meng, C. Z.; Guo, S. J. Bioinspired Flexible, Breathable, Waterproof and Self-Cleaning Iontronic Tactile Sensors for Special Underwater Sensing Applications. Nano Energy 2023, 110, 108367; https://doi.org/10.1016/j.nanoen.2023.108367.Search in Google Scholar

146. He, J. M.; Shi, F.; Liu, Q. H.; Pang, Y. J.; He, D.; Sun, W. C.; Peng, L.; Yang, J.; Qu, M. N. Wearable Superhydrophobic PPy/MXene Pressure Sensor Based on Cotton Fabric with Superior Sensitivity for Human Detection and Information Transmission. Colloid. Surface. A. 2022, 642, 128676; https://doi.org/10.1016/j.colsurfa.2022.128676.Search in Google Scholar

147. Wang, Y.; Luo, Z. L.; Qian, Y. Q.; Zhang, W.; Chen, L. Z. Monolithic MXene Composites with Multi-Responsive Actuating and Energy-Storage Multi-Functions. Chem. Eng. J. 2023, 454, 140513; https://doi.org/10.1016/j.cej.2022.140513.Search in Google Scholar

148. Wu, P. X.; Qin, Z. Y.; Dassanayake, R.; Sun, Z. C.; Cao, M. J.; Fu, K.; Zhou, Y.; Liu, Y. Y. Antimicrobial MXene-Based Conductive Alginate Hydrogels as Flexible Electronics. Chem. Eng. J. 2023, 455, 140546; https://doi.org/10.1016/j.cej.2022.140546.Search in Google Scholar

149. Wang, D. Y.; Zhang, D. Z.; Tang, M. C.; Zhang, H.; Chen, F. J.; Wang, T.; Li, Z.; Zhao, P. P. Rotating Triboelectric-Electromagnetic Nanogenerator Driven by Tires for Self-Powered MXene-Based Flexible Wearable Electronics. Chem. Eng. J. 2022, 446, 136914; https://doi.org/10.1016/j.cej.2022.136914.Search in Google Scholar

150. Chen, M. M.; Hu, X. Y.; Li, K.; Sun, J. K.; Liu, Z. J.; An, B. G.; Zhou, X.; Liu, Z. F. Self-assembly of Dendritic-Lamellar MXene/Carbon Nanotube Conductive Films for Wearable Tactile Sensors and Artificial Skin. Carbon 2020, 164, 111–120; https://doi.org/10.1016/j.carbon.2020.03.042.Search in Google Scholar

151. Cui, T. R.; Qiao, Y. C.; Li, D.; Huang, X. R.; Yang, L.; Yan, A. Z.; Chen, Z. K.; Xu, J. D.; Tan, X. C.; Jian, J. M.; Li, Z.; Ji, S. R.; Liu, H. F.; Yang, Y.; Zhang, X. G.; Ren, T. L. Multifunctional, Breathable MXene-PU Mesh Electronic Skin for Wearable Intelligent 12-lead ECG Monitoring System. Chem. Eng. J. 2023, 455, 140690; https://doi.org/10.1016/j.cej.2022.140690.Search in Google Scholar

152. Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable Polymer-Crosslinked 2D MXene-Based Flexible Biocompatible Electronic Skins for In Vivo Biomonitoring. Nano Energy 2021, 84, 105921; https://doi.org/10.1016/j.nanoen.2021.105921.Search in Google Scholar

153. Pen, W. W.; Pan, X. R.; Liu, X. J.; Gao, Y.; Lu, T.; Li, J. B.; Xu, M.; Pan, L. K. A Moisture Self-Regenerative, Ultra-low Temperature Anti-freezing and Self-adhesive Polyvinyl alcohol/polyacrylamide/CaCl2/MXene Ionotronics Hydrogel for Bionic Skin Strain Sensor. J. Colloid Interface Sci. 2023, 634, 782–792; https://doi.org/10.1016/j.jcis.2022.12.101.Search in Google Scholar PubMed

154. Le, V. T.; Vasseghian, Y.; Doan, V. D.; Nguyen, T. T. T.; Vo, T. T. T.; Do, H. H.; Vu, K. B.; Vu, Q. H.; Lam, T. D.; Tran, V. A. Flexible and High-Sensitivity Sensor Based on Ti3C2-MoS2 MXene Composite for the Detection of Toxic Gases. Chemosphere 2022, 291, 133025; https://doi.org/10.1016/j.chemosphere.2021.133025.Search in Google Scholar PubMed

155. Xu, H.; Jiang, X. Y.; Yang, K. Y.; Ren, J. C.; Zhai, Y. H.; Han, X. S.; Cai, H. Z.; Gao, F. Conductive and Eco-Friendly gluten/MXene Composite Organohydrogels for Flexible, Adhesive, and Low-Temperature Tolerant Epidermal Strain Sensors. Colloid. Surface A. 2022, 636, 128182; https://doi.org/10.1016/j.colsurfa.2021.128182.Search in Google Scholar

156. Li, R.; Tian, X. H.; Wei, M.; Dong, A. J.; Pan, X.; He, Y. L.; Song, X. Y.; Li, H. F. Flexible Pressure Sensor Based on Cigarette Filter and Highly Conductive MXene Sheets. Compos. Commun. 2021, 27, 100889; https://doi.org/10.1016/j.coco.2021.100889.Search in Google Scholar

157. Huang, H. Z.; Dong, Y. D.; Wan, S.; Shen, J. X.; Li, C.; Han, L. X.; Dou, G. B.; Sun, L. T. A Transient Dual-type Sensor Based on MXene/cellulose Nanofibers Composite for Intelligent Sedentary and Sitting Postures Monitoring. Carbon 2022, 200, 327–336; https://doi.org/10.1016/j.carbon.2022.08.070.Search in Google Scholar

158. Wang, D. Y.; Wang, L. L.; Lou, Z. G.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, Biocompatible and Robust Silk Fibroin-MXene Film with Stable 3D Cross-Link Structure for Flexible Pressure Sensors. Nano Energy 2020, 78, 105252; https://doi.org/10.1016/j.nanoen.2020.105252.Search in Google Scholar

159. Yang, X.; Wu, F. X.; Xu, C. Y.; Yang, L. Y.; Yin, S. G. A Flexible High-Output Triboelectric Nanogenerator Based on MXene/CNT/PEDOT Hybrid Film for Self-Powered Wearable Sensors. J. Alloys Compd. 2022, 928, 167137; https://doi.org/10.1016/j.jallcom.2022.167137.Search in Google Scholar

160. Chen, A.; Wang, C. Y.; Ali, O. A. A.; Mahmoud, S. F.; Shi, Y. T.; Ji, Y. X.; Algadi, H.; El-Bahy, S. M.; Huang, M.; Guo, Z. H.; Cui, D. P.; Wei, H. G. MXene@nitrogen-doped Ca Rbon Films for Supercapacitor and Piezoresistive Sensing Applications. Compos. Part A. 2022, 163, 107174.10.1016/j.compositesa.2022.107174Search in Google Scholar

161. Fan, J. C.; Yuan, M. M.; Wang, L. B.; Xia, Q. X.; Zheng, H. W.; Zhou, A. G. MXene Supported by Cotton Fabric as Electrode Layer of Triboelectric Nanogenerators for Flexible Sensors. Nano Energy 2023, 105, 107973; https://doi.org/10.1016/j.nanoen.2022.107973.Search in Google Scholar

162. Hazarika, A.; Deka, B. K.; Seo, J.; Jeong, H. E.; Park, Y. B.; Park, H. W. Porous Spongy FexCo1-xP Nanostructure and MXene Infused Self-Powered Flexible Textile Based Personal Thermoregulatory Device. Nano Energy 2021, 86, 106042; https://doi.org/10.1016/j.nanoen.2021.106042.Search in Google Scholar

163. Zhang, Z. C.; Yan, Q. Y.; Liu, Z. R.; Zhao, X. Y.; Wang, Z.; Sun, J.; Wang, Z. L.; Wang, R. R.; Li, L. L. Flexible MXene Composed Triboelectric Nanogenerator via Facile Vacuum-Assistant Filtration Method for Self-Powered Biomechanical Sensing. Nano Energy 2021, 88, 106257; https://doi.org/10.1016/j.nanoen.2021.106257.Search in Google Scholar

164. Rana, S. M. S.; Rahman, M. T.; Zahed, M. A.; Lee, S. H.; Shin, Y. D.; Seonu, S.; Kim, D.; Salauddin, M.; Bhatt, T.; Sharstha, K.; Park, J. Y. Zirconium Metal-Organic Framework and Hybridized Co-NPC@MXene Nanocomposite-Coated Fabric for Stretchable, Humidity-Resistant Triboelectric Nanogenerators and Self-Powered Tactile Sensors. Nano Energy 2022, 104, 107931; https://doi.org/10.1016/j.nanoen.2022.107931.Search in Google Scholar

165. Rahman, M. T.; Rana, S. M. S.; Salauddin, M.; Zahed, M. A.; Lee, S.; Yoon, E. S.; Park, J. Y. Silicone-incorporated Nanoporous Cobalt Oxide and MXene Nanocomposite-Coated Stretchable Fabric for Wearable Triboelectric Nanogenerator and Self-Powered Sensing Applications. Nano Energy 2022, 100, 107454; https://doi.org/10.1016/j.nanoen.2022.107454.Search in Google Scholar

166. Yi, Q.; Pei, X. C.; Das, P.; Qin, H. T.; Lee, S. W.; Esfandyarpour, R. A Self-Powered Triboelectric MXene-Based 3D-Printed Wearable Physiological Biosignal Sensing System for On-Demand, Wireless, and Real-Time Health Monitoring. Nano Energy 2022, 101, 107511; https://doi.org/10.1016/j.nanoen.2022.107511.Search in Google Scholar

167. Li, X. P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H. B.; Koratkar, N.; Yu, Z. Z. Highly Sensitive, Reliable and Flexible Piezoresistive Pressure Sensors Featuring Polyurethane Sponge Coated with MXene Sheets. J. Colloid Interface Sci. 2019, 542, 54–62; https://doi.org/10.1016/j.jcis.2019.01.123.Search in Google Scholar PubMed

168. Cai, Y. W.; Zhang, X. N.; Wang, G. G.; Li, G. Z.; Zhao, D. Q.; Sun, N.; Li, F.; Zhang, H. Y.; Han, J. C.; Yang, Y. A Flexible Ultra-sensitive tribo.Electric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 2021, 81, 105663; https://doi.org/10.1016/j.nanoen.2020.105663.Search in Google Scholar

169. Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly Sensitive Self-Powered Pressure and Strain Sensor Based on Crumpled MXene Film for Wireless Human Motion Detection. Nano Energy 2022, 92, 106689; https://doi.org/10.1016/j.nanoen.2021.106689.Search in Google Scholar

170. Irfan, M. S.; Ali, M. A.; Khan, T.; Anwer, S.; Liao, K.; Umer, R. MXene and Graphene Coated Multifunctional Fiber Reinforced Aerospace Composites with Sensing and EMI Shielding Abilities. Compos. Part A. 2023, 165, 107351; https://doi.org/10.1016/j.compositesa.2022.107351.Search in Google Scholar

171. Li, Z. M.; Feng, D.; Li, B.; Xie, D. L.; Mei, Y. FDM Printed MXene/MnFe2O4/MWCNTs Reinforced TPU Composites with 3D Voronoi Structure for Sensor and Electromagnetic Shielding Applications. Compos. Sci. Technol. 2023, 231, 109803; https://doi.org/10.1016/j.compscitech.2022.109803.Search in Google Scholar

172. Sindhu, B.; Adepu, V.; Sahatiya, P.; Nandi, S. An MXene Based Flexible Patch Antenna for Pressure and Level Sensing Applications. Flat Chem. 2022, 33, 100367; https://doi.org/10.1016/j.flatc.2022.100367.Search in Google Scholar

173. Sang, M.; Liu, S.; Li, W. W.; Wang, S.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Flexible Polyvinylidene Fluoride (PVDF)/MXene (Ti3C2Tx)/Polyimide (PI) Wearable Electronic for Body Monitoring, Thermotherapy and Electromagnetic Interference Shielding. Compos. Part A. 2022, 153, 106727; https://doi.org/10.1016/j.compositesa.2021.106727.Search in Google Scholar

174. Lu, C.; Yu, X. P.; Chen, Y. X.; Chen, X.; Zhang, X. H. Giant Piezoionic Effect of Ultrathin MXene Nanosheets toward Highly-Sensitive Sleep Apnea Diagnosis. Chem. Eng. J. 2023, 463, 142523; https://doi.org/10.1016/j.cej.2023.142523.Search in Google Scholar

175 Guo, B. Y.; He, S. H.; Yao, M. M.; Tan, Z. Y.; Li, X.; Liu, M.; Yu, C. J.; Liang, L.; Zhao, Z. M.; Guo, Z. C.; Shi, M. Y.; Wei, Y. P.; Zhang, H.; Yao, F. L.; Li, J. J. MXene-Containing Anisotropic Hydrogels Strain Sensors with Enhanced Sensing Performance for Human Motion Monitoring and Wireless Transmission. Chem. Eng. J. 2023, 461, 142099; https://doi.org/10.1016/j.cej.2023.142099.Search in Google Scholar

Received: 2024-05-28
Accepted: 2024-08-07
Published Online: 2024-08-23
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0110/html
Scroll to top button