Startseite Carbon dioxide adsorption onto modified polyvinyl chloride with ionic liquid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Carbon dioxide adsorption onto modified polyvinyl chloride with ionic liquid

  • Narmin Noorani EMAIL logo , Abbas Mehrdad ORCID logo , Iraj Ahadzadeh und Parinaz Shajari Sefidehkhan
Veröffentlicht/Copyright: 25. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

To modify polyvinylchloride membranes for carbon dioxide gas separation, six polyvinyl chloride-g-polyionic liquid ionomers such as polyvinylchloride-g-poly1-vinyl-3-hexylimidazolium bromide (PVC-g-P[VHIm][Br]), polyvinylchloride-g-poly1-vinyl-3-hexylimidazolium thiocyanate (PVC-g-P[VHIm][SCN]), polyvinylchloride-g-poly1-vinyl-3-hexylimidazolium tetrafluoroborate (PVC-g-P[VHIm][ BF4]), polyvinylchloride-g-poly1-vinyl-3-octylimidazolium bromide (PVC-g-P[VOIm][Br]), polyvinylchloride-g-poly1-vinyl-3-octylimidazolium thiocyanate (PVC-g-P[VOIm][SCN]) and polyvinylchloride-g-poly1-vinyl-3-octylimidazolium tetrafluoroborate (PVC-g-P[VOIm][ BF4]) were synthesized. The polyvinyl chloride-g-polyionic liquid ionomers were characterized using elemental analyzer (CHN) and Fourier transform infrared spectroscopy (FTIR) techniques. CO2 adsorption onto these ionomers was measured by quartz crystal microbalance (QCM) and the experimental data were correlated by the sorption model. The parameters obtained imply that CO2 adsorption has an exothermic and physisorption nature. Also, the investigations point to that the PVC-g-P[VHIm][SCN] has better performance for CO2 separation.


Corresponding author: Narmin Noorani, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no known competing financial and non financial interest so personal relationships that could have appeared to influence the work reported in this paper.

References

1. Khan, A. A., Tahir, M. Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. J. CO2 Util. 2019, 29, 205–239. https://doi.org/10.1016/j.jcou.2018.12.008.Suche in Google Scholar

2. Cui, G. K., Wang, J. J., Zhang, S. J. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem. Soc. Rev. 2016, 45, 4307–4339. https://doi.org/10.1039/c5cs00462d.Suche in Google Scholar PubMed

3. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C. S., Williams, C. K., Shah, N., Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. https://doi.org/10.1039/c004106h.Suche in Google Scholar

4. Earle, M. J., Esperanca, J., Gilea, M. A., Lopes, J. N. C., Rebelo, L. P. N., Magee, J. W., Seddon, K. R., Widegren, J. A. The distillation and volatility of ionic liquids. Nature 2006, 439, 831–834. https://doi.org/10.1038/nature04451.Suche in Google Scholar PubMed

5. Bara, J. E., Carlisle, T. K., Gabriel, C. J., Camper, D., Finotello, A., Gin, D. L., Noble, R. D. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009, 48, 2739–2751. https://doi.org/10.1021/ie8016237.Suche in Google Scholar

6. Kang, S., Chung, Y. G., Kang, J. H., Song, H. CO2 absorption characteristics of amino group functionalized imidazolium-based amino acid ionic liquids. J. Mol. Liq. 2020, 297, 111825. https://doi.org/10.1016/j.molliq.2019.111825.Suche in Google Scholar

7. Wilke, A., Yuan, J. Y., Antonietti, M., Weber, J. Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett. 2012, 1, 1028–1031. https://doi.org/10.1021/mz3003352.Suche in Google Scholar PubMed

8. Tang, J., Shen, Y., Radosz, M., Sun, W. Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind. Eng. Chem. Res. 2009, 48, 9113–9118. https://doi.org/10.1021/ie900292p.Suche in Google Scholar

9. Tang, J., Tang, H., Sun, W. Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 2005, 46, 12460–12467. https://doi.org/10.1016/j.polymer.2005.10.082.Suche in Google Scholar

10. Tang, J., Tang, H., Sun, W., Radosz, M., Shen, Y. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J. Polym. Sci. Part A: Polym. Chem. 2005, 22, 5477–5489. https://doi.org/10.1002/pola.21031.Suche in Google Scholar

11. Yu, G., Li, Q., Li, N., Man, Z., Pu, C., Asumana, C., Chen, X. Synthesis of new crosslinked porous ammonium-based poly(ionic liquid) and application in CO2 adsorption. Polym. Eng. Sci. 2014, 54, 59–63. https://doi.org/10.1002/pen.23541.Suche in Google Scholar

12. Tang, J., Tang, H., Sun, W., Plancher, H., Radosz, M., Shen, Y. Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem. Commun. 2005, 26, 3325–3327. https://doi.org/10.1039/b501940k.Suche in Google Scholar PubMed

13. Rana, H., Wang, J., Abdeltawab, A. A., Chena, X., Yua, G., Yu, Q. Y. Synthesis of polymeric ionic liquids material and application in CO2 adsorption. J. Energy Chem. 2017, 26, 909–918. https://doi.org/10.1016/j.jechem.2017.06.001.Suche in Google Scholar

14. Privalova, E. I., Karjalainen, E., Nurmi, M., Mki-Arvela, P., Ernen, K., Tenhu, H., Murzin, Yu. D., Mikkol, J. P. Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. Chem. Sus. Chem 2013, 6, 1500–1509. https://doi.org/10.1002/cssc.201300120.Suche in Google Scholar PubMed

15. Mehrdad, A., Noorani, N. Permeability behavior of polyvinyl chloride-ionic liquid ionomer for CO2/CH4 separation. Sep. Purif. Technol. 2019, 226, 138–145. https://doi.org/10.1016/j.seppur.2019.05.086.Suche in Google Scholar

16. Mehrdad, A., Noorani, N. Study of CO2 adsorption onto poly(1-vinylimidazole) using quartz crystal microbalance and density functional theory methods. J. Mol. Liq. 2019, 291, 111288. https://doi.org/10.1016/j.molliq.2019.111288.Suche in Google Scholar

17. Noorani, N., Mehrdad, A. Adsorption, permeation, and DFT studies of PVC/PVIm blends for separation of CO2/CH4. J. Mol. Liq. 2019, 292, 111410. https://doi.org/10.1016/j.molliq.2019.111410.Suche in Google Scholar

18. Noorani, N., Mehrdad, A. Modification of PVC with 1-vinylimidazole for CO2/CH4 separation: sorption, permeation and DFT studies. Phys. Chem. Res. 2020, 8, 689–703.Suche in Google Scholar

19. Noorani, N., Mehrdad, A. Experimental and theoretical study of CO2 sorption in biocompatible and biodegradable cholinium-based ionic liquids. Sep. Purif. Technol. 2021, 254, 117609. https://doi.org/10.1016/j.seppur.2020.117609.Suche in Google Scholar

20. Pekel, N., Güven, O. Spectroscopic and thermal studies of poly[(N-vinylimidazole)–co-(maleicacid)]hydrogel and its quaternized form. Polym. Int. 2008, 57, 637–643. https://doi.org/10.1002/pi.2389.Suche in Google Scholar

21. Unal, H. I., Erol, O., Gumus, O. Y. Quaternizedpoly (N-vinylimidazole)/Mon–tmorillonite nanocomposite: synthesis, characterization and electrokinetic properties. Colloid Surf. A 2014, 442, 132–138. https://doi.org/10.1016/j.colsurfa.2013.04.054.Suche in Google Scholar

22. Martinez, G., Santos, E. d., Millan, J. L. Synthesis of PVC–graft–PMMA through stereoselective nucleophilic substitution on PVC. Macromol. Chem. Phys. 2001, 202, 2377–2386. https://doi.org/10.1002/1521-3935(20010701)202:11<2377::aid-macp2377>3.0.co;2-6.10.1002/1521-3935(20010701)202:11<2377::AID-MACP2377>3.0.CO;2-6Suche in Google Scholar

23. Paluri, P., Ahmad, K. A., Durbha, K. S. Importance of estimation of optimum isotherm model parameters for adsorption of methylene blue onto biomass derived activated carbons: comparison between linear and non-linear methods. Biomass Conv. Bioref. 2020. https://doi.org/10.1007/s13399-020-00867-y.10.1007/s13399-020-00867-ySuche in Google Scholar

24. Ezzati, R. Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and freundlich isotherms for adsorption. Chem. Eng. J. 2020, 392, 123705. https://doi.org/10.1016/j.cej.2019.123705.Suche in Google Scholar

25. Wu, C. H. Sorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2007, 144, 93–100. https://doi.org/10.1016/j.jhazmat.2006.09.083.Suche in Google Scholar

26. Bhavsar, R. S., Kumbharkar, S. C., Kharul, U. K. Investigation of gas permeation properties of film forming polymeric ionic liquids (PILs) based on polybenzimidazoles. J. Memb. Sci. 2014, 470, 494–503. https://doi.org/10.1016/j.memsci.2014.07.076.Suche in Google Scholar

27. Tsujita, Y. Gas sorption and permeation of glassy polymers with microvoids. Prog. Polym. Sci. 2003, 28, 1377–1401. https://doi.org/10.1016/s0079-6700(03)00048-0.Suche in Google Scholar

28. Kanehashi, S., Nagai, K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. J. Membr. Sci. 2005, 253, 117–138. https://doi.org/10.1016/j.memsci.2005.01.003.Suche in Google Scholar

29. Islam, M. N., Zhou, W., Honda, T., Tanaka, K., Kita, H., Okamoto, K. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides. J. Membr. Sci. 2005, 261, 17–26. https://doi.org/10.1016/j.memsci.2005.02.019.Suche in Google Scholar

30. Gallardo-Fuentesa, S., Contrerasa, R., Isaacsb, M., Honoresb, J., Quezadab, D., Landaetab, E., Ormazábal, R. On the mechanism of CO2 electro-cycloaddition to propylene oxides. J. CO2 Util. 2016, 16, 114–120. https://doi.org/10.1016/j.jcou.2016.06.007.Suche in Google Scholar

31. Kuban, P., Janos, P., Kuban, V. Gas diffusion-flow injection determination of free and total sulfur dioxide in wines by conductometry. Collect. Czech Chem. Commun. 1998, 63, 770–782.10.1135/cccc19980770Suche in Google Scholar

32. Bhavsar, S. R., Kumbharkar, S. C., Kharu, U. K. Polymeric ionic liquids (PILs): effect of anion variation on their CO2 sorption. J. Membr. Sci. 2012, 389, 305–315. https://doi.org/10.1016/j.memsci.2011.10.042.Suche in Google Scholar

33. Wang, C., Luo, X., Luo, H., Jiang, D., Li, H., Dai, S. Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew. Chem. 2011, 50, 4918–4922. https://doi.org/10.1002/anie.201008151.Suche in Google Scholar PubMed

34. Lima, E. C., Gomes, A. A., Tran, H. N. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆<B>S</B>° and ∆<B>H</B>°). J. Mol. Liq. 2020, 311, 113315. https://doi.org/10.1016/j.molliq.2020.113315.Suche in Google Scholar

35. Skumaran, M., Saravanan, C., Sethuraman, V., Puthiaraj, P., Mareeswaran, P. M. Nitrogen-rich polyaminal porous network for CO2 uptake studies and preparation of carbonized materials. Europ. Polym. J. 2020, 124, 109477.10.1016/j.eurpolymj.2020.109477Suche in Google Scholar

36. Xiao, M., Zheng, W., Liu, H., Luo, X., Gao, H., Liang, Z. Thermodynamic analysis of carbamate formation and carbon dioxide absorption in N-methylaminoethanol solution. Appl. Energy 2021, 281, 116021. https://doi.org/10.1016/j.apenergy.2020.116021.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0332).


Received: 2021-11-18
Revised: 2022-01-26
Accepted: 2022-02-27
Published Online: 2022-04-25
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0332/html
Button zum nach oben scrollen