Home Synergistic effect of organic-Zn(H2PO2)2 and lithium containing polyhedral oligomeric phenyl silse-squioxane on flame-retardant, thermal and mechanical properties of poly(ethylene terephthalate)
Article
Licensed
Unlicensed Requires Authentication

Synergistic effect of organic-Zn(H2PO2)2 and lithium containing polyhedral oligomeric phenyl silse-squioxane on flame-retardant, thermal and mechanical properties of poly(ethylene terephthalate)

  • Xiaofei Yan ORCID logo EMAIL logo , Zhikui Zhao , Jie Fang , Jiawei Li and Dongming Qi
Published/Copyright: April 21, 2022
Become an author with De Gruyter Brill

Abstract

A novel synergy flame retardant system of poly(ethylene terephthalate) (PET)/organic-Zn(H2PO2)2/lithium containing polyhedral oligoheptyl silse-squioxane (Li-Ph-POSS) composites was prepared by the melt-blending method to improve the flame retardancy of PET. The synergistic effect of organic-Zn(H2PO2)2 and Li-Ph-POSS on the flame retardancy, thermal, and mechanical properties of the PET composites was investigated by the limiting oxygen index, vertical burning test, cone calorimeter, thermogravimetric analysis, differential scanning calorimeter, tensile tester, and dynamic mechanical analysis, respectively. The results show that the synergistic flame retardant effect between organic-Zn(H2PO2)2 and Li-Ph-POSS improves both the flame retardancy and the crystallization of PET. Moreover, the Li-Ph-POSS has a positive effect on the mechanical property of PET. This work provides a promising strategy for mitigating the fire hazard of PET using this synergy flame retardant system.


Corresponding author: Xiaofei Yan, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China; and College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China, E-mail:

Funding source: General Scientific Research Projects of Education Department of Zhejiang

Award Identifier / Grant number: 21200069-F, Application No.Y202148175

Funding source: Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University

Award Identifier / Grant number: 20200617-J

Funding source: Economy and Information Technology Department of Zhejiang

Award Identifier / Grant number: 19016232-M

Funding source: Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University

Award Identifier / Grant number: 19012098-Y

Funding source: “Top Soldier” and “Leading Wild Goose” R&D Project of Zhejiang

Award Identifier / Grant number: 2022C01210

Funding source: Outstanding Doctors Foundation of Zhejiang Sci-Tech University

Award Identifier / Grant number: 2019YBZX04

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the “Top Soldier” and “Leading Wild Goose” R&D Project of Zhejiang (grant no. 2022C01210), General Scientific Research Projects of Education Department of Zhejiang (grant no. 21200069-F, application no. Y202148175), Economy and Information Technology Department of Zhejiang (grant no. 19016232-M), Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University (grant no. 19012098-Y), Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (grant no. 20200617-J), Outstanding Doctors Foundation of Zhejiang Sci-Tech University (grant no. 2019YBZX04).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, S., Xie, S., Guang, S., Bao, J., Zhang, X., Chen, W. Crystallization and thermal behaviors of poly (ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers 2020, 12, 3053.https://doi.org/10.3390/polym12123053.Search in Google Scholar PubMed PubMed Central

2. Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., Maghool, F. Utilizing recycled PET blends with demolition wastes as construction materials. Const. Build. Mater. 2019, 221, 200–209.https://doi.org/10.1016/j.conbuildmat.2019.06.047.Search in Google Scholar

3. Li, S., Wang, R. Poly (ethylene terephthalate)/poly (ethylene-co-vinyl alcohol) sheath-core fibers: preparation and characterization. J. Polym. Eng. 2015, 35, 785–791.https://doi.org/10.1515/polyeng-2014-0329.Search in Google Scholar

4. Michaeli, W., Schmitz, T. PET film extrusion with degassing. J. Polym. Eng. 2006, 26, 147–160.https://doi.org/10.1515/polyeng.2006.26.2-4.147.Search in Google Scholar

5. Li, S., Vela, I., Järvinen, I. M., Seemann, M. Polyethylene terephthalate (PET) recycling via steam gasification–the effect of operating conditions on gas and tar composition. Waste Manag. 2021, 130, 117–126.https://doi.org/10.1016/j.wasman.2021.05.023.Search in Google Scholar PubMed

6. Laoutid, F., Ferry, L., Lopez‐Cuesta, J. M., Crespy, A. Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET. Fire Mater. 2006, 30, 343–358.https://doi.org/10.1002/fam.914.Search in Google Scholar

7. Wang, W., Meng, L., Huang, Y. Hydrolytic degradation of monomer casting nylon in subcritical water. Polym. Degrad. Stab. 2014, 110, 312–317.https://doi.org/10.1016/j.polymdegradstab.2014.09.014.Search in Google Scholar

8. Salmeia, K. A., Gooneie, A., Simonetti, P., Nazir, R., Kaiser, J. P., Rippl, A., Hirsch, C., Lehner, S., Rupper, P., Hufenus, R., Gaan, S. Comprehensive study on flame retardant polyesters from phosphorus additives. Polym. Degrad. Stab. 2018, 155, 22–34; https://doi.org/10.1016/j.polymdegradstab.2018.07.006.Search in Google Scholar

9. Han, X., Zhao, J., Liu, S., Yuan, Y. Flame retardancy mechanism of poly(butylene terephthalate)/aluminum diethylphosphinate composites with an epoxy-functional polysiloxane. RSC Adv. 2014, 4, 16551–16560.https://doi.org/10.1039/c4ra00515e.Search in Google Scholar

10. Zhou, S., Yang, Y., Zhu, Z., Xie, Z., Sun, X., Jia, C., Liu, F., Wang, J., Yang, J., Yang, J. Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer 2021, 229, 124027.https://doi.org/10.1016/j.polymer.2021.124027.Search in Google Scholar

11. Li, J., Zeng, X., Kong, D., Xu, H., Zhang, L., Zhong, Y., Sui, X., Mao, Z. Synergistic effects of a novel silicon-containing triazine charring agent on the flame-retardant properties of poly(ethylene terephthalate)/hexakis (4-phenoxy)cyclotriphosphazene composites. Polym. Compos. 2018, 39, 858–868.https://doi.org/10.1002/pc.24009.Search in Google Scholar

12. Cross, M. S., Cusack, P. A., Hornsby, P. R. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer. Polym. Degrad. Stabil. 2003, 79, 309–318.https://doi.org/10.1016/s0141-3910(02)00294-x.Search in Google Scholar

13. Feng, C., Liang, M., Jiang, J., Huang, J., Liu, H. Flame retardant properties and mechanism of an efficient intumescent flame retardant PLA composites. Polym. Adv. Technol. 2016, 27, 693–700.https://doi.org/10.1002/pat.3743.Search in Google Scholar

14. Kilinc, M., Cakal, G. O., Bayram, G., Eroglu, I., Özkar, S. Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives. J. Appl. Polym. Sci. 2015, 132, 42016.https://doi.org/10.1002/app.42016.Search in Google Scholar

15. Zhou, X., Qiu, S., Mu, X., Zhou, M., Cai, W., Song, L., Xing, W., Hu, Y. Polyphosphazenes-based flame retardants: a review. Compos. B Eng. 2020, 202, 108397.https://doi.org/10.1016/j.compositesb.2020.108397.Search in Google Scholar

16. Naik, D., Wazarkar, K., Sabnis, A. UV-curable flame-retardant coatings based on phosphorous and silicon containing oligomers. J. Coat. Technol. Res. 2019, 16, 733–743.https://doi.org/10.1007/s11998-018-0151-7.Search in Google Scholar

17. Price, D., Cunliffe, L. K., Bullett, K. J., Hull, T. R., Milnes, G. J., Ebdon, J. R., Hunt, P., Joseph, P. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym. Degrad. Stab. 2007, 92, 1101–1114.https://doi.org/10.1016/j.polymdegradstab.2007.02.003.Search in Google Scholar

18. La Rosa, A. D., Failla, S., Finocchiaro, P., Recca, A., Siracusa, V., Carter, J. T., McGrail, P. T. Flame-retarding properties of a new phosphorus-containing monomer used as hardener in an epoxy system. J. Polym. Eng. 1999, 19, 151–160.https://doi.org/10.1515/polyeng-1999-0302.Search in Google Scholar

19. Netkueakul, W., Fischer, B., Walder, C., Nüesch, F., Rees, M., Jovic, M., Gaan, S., Jacob, P., Wang, J. Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite. Polymers 2020, 12, 2349.https://doi.org/10.3390/polym12102349.Search in Google Scholar PubMed PubMed Central

20. Tawiah, B., Yu, B., Fei, B. Advances in flame retardant poly(lactic acid). Polymers 2018, 10, 876.https://doi.org/10.3390/polym10080876.Search in Google Scholar PubMed PubMed Central

21. Keshavarzian, A., Haghighi, M. N., Taromi, F. A., Abedini, H. Phosphorus-based flame retardant poly (butylene terephthalate): synthesis, flame retardancy and thermal behavior. Polym. Degrad. Stab. 2020, 180, 109310.https://doi.org/10.1016/j.polymdegradstab.2020.109310.Search in Google Scholar

22. Lu, L., Guo, N, Qian, X., Yang, S., Wang, X., Jin, J., Shao, G. Thermal degradation and combustion behavior of intumescent flame-retardant polypropylene with novel phosphorus-based flame retardants. J. Appl. Polym. Sci. 2018, 135, 45962.https://doi.org/10.1002/app.45962.Search in Google Scholar

23. Amarnath, N., Appavoo, D., Lochab, B. Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks. ACS Sustainable Chem. Eng. 2018, 6, 389–402.https://doi.org/10.1021/acssuschemeng.7b02657.Search in Google Scholar

24. Li, J., Pan, F., Zeng, X., Xu, H., Zhang, L., Zhong, Y., Sui, X., Mao, Z. The flame-retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (para-allyloxyphenoxy) cyclotriphosphazene systems. J. Appl. Polym. Sci. 2015, 132, 42711.https://doi.org/10.1002/app.42711.Search in Google Scholar

25. Pagacz, J., Hebda, E., Janowski, B., Sternik, D., Jancia, M., Pielichowski, K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym. Degrad. Stab. 2018, 149, 129–142.https://doi.org/10.1016/j.polymdegradstab.2018.01.028.Search in Google Scholar

26. Lichtenhan, J. D., Pielichowski, K., Blanco, I. POSS-based polymers. Polymers 2019, 11, 1727.https://doi.org/10.3390/polym11101727.Search in Google Scholar PubMed PubMed Central

27. Qi, Z., Zhang, W., He, X., Yang, R. High-efficiency flame retardency of epoxy resin composites with perfect T-8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs). Compos. Sci. Technol. 2016, 127, 8–19.https://doi.org/10.1016/j.compscitech.2016.02.026.Search in Google Scholar

28. Yang, B., Chen, Y., Zhang, M., Yuan, G. Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/ intumescent flame retardant composite system. Compos. Appl. Sci. Manuf. 2019, 123, 46–58.https://doi.org/10.1016/j.compositesa.2019.04.032.Search in Google Scholar

29. Zhu, S. E., Wang, L. L., Wang, M. Z., Yuen, A. C. Y., Chen, T. B. Y., Yang, W., Pan, T. Z., Zhi, Y. R., Lu, H. D. Simultaneous enhancements in the mechanical, thermal stability, and flame retardant properties of poly(1,4-butylene terephthalate) nanocomposites with a novel phosphorus-nitrogen-containing polyhedral oligomeric silsesquioxane. RSC Adv. 2017, 7, 54021–54030.https://doi.org/10.1039/c7ra11437k.Search in Google Scholar

30. Rybiński, P., Syrek, B., Bradło, D., Żukowski, W. Effect of POSS particles and of poss and poly-(melamine phosphate) on the thermal properties and flame retardance of silicone rubber composites. Materials 2018, 11, 1298.10.3390/ma11081298Search in Google Scholar PubMed PubMed Central

31. Zhai, C., Xin, F., Cai, L., Chen, Y., Qian, L. Flame retardancy and pyrolysis behavior of an epoxy resin composite flame-retarded by diphenylphosphinyl-POSS. Polym. Eng. Sci. 2020, 60, 3024–3035.https://doi.org/10.1002/pen.25533.Search in Google Scholar

32. Liu, Y., Fang, Z. Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer. J. Polym. Eng. 2015, 35, 443–449.https://doi.org/10.1515/polyeng-2014-0291.Search in Google Scholar

33. Liu, L., Zhang, W., Yang, R. Flame retardant epoxy composites with epoxy-containing polyhedral oligomeric silsesquioxanes. Polym. Adv. Technol. 2020, 31, 2058–2074.https://doi.org/10.1002/pat.4929.Search in Google Scholar

34. Zhang, W., Li, X., Yang, R. Flame retardant mechanisms of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS) in polycarbonate composites. J. Appl. Polym. Sci. 2012, 124, 1848–1857.https://doi.org/10.1002/app.35203.Search in Google Scholar

35. Mohamed, M.G., Kuo, S.W. Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol. Chem. Phys. 2019, 220, 1800306.https://doi.org/10.1002/macp.201800306.Search in Google Scholar

36. Mohamed, M.G., Kuo, S.W. Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers 2019, 11, 26.10.3390/polym11010026Search in Google Scholar PubMed PubMed Central

37. Aly, K. I., Sayed, M. M., Mohamed, M. G., Kuo, S. W., Younis, O. A facile synthetic route and dual function of network luminescent porous polyester and copolyester containing porphyrin moiety for metal ions sensor and dyes adsorption. Micropor. Mesopor. Mat. 2020, 298, 110063.https://doi.org/10.1016/j.micromeso.2020.110063.Search in Google Scholar

38. Zhang, X., Zhao, S., Mohamed, M. G., Kuo, S. W., Xin, Z. Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J. Mater. Sci. 2020, 55, 14642–14655.https://doi.org/10.1007/s10853-020-05003-9.Search in Google Scholar

39. Mohamed, M. G., Mansoure, T. H., Takashi, Y., Samy, M. M., Chen, T., Kuo, S. W. Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage. Micropor. Mesopor. Mat. 2021, 328, 111505.https://doi.org/10.1016/j.micromeso.2021.111505.Search in Google Scholar

40. MohamedAtayde, M. G. E., Matsagard, B. M., Na, J., Yamauchi, Y., Wu, Kevin C., Kuo, S. W. Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J. Taiwan Inst. Chem. E. 2020, 112, 180–192.https://doi.org/10.1016/j.jtice.2020.06.013.Search in Google Scholar

41. Ye, X., Zhang, W., Yang, R., He, J., Li, J., Zhao, F. Facile synthesis of lithium containing polyhedral oligomeric phenyl silsesquioxane and its superior performance in transparency, smoke suppression and flame retardancy of epoxy resin. Compos. Sci. Technol. 2020, 189, 108004.https://doi.org/10.1016/j.compscitech.2020.108004.Search in Google Scholar

Received: 2021-12-21
Accepted: 2022-02-25
Published Online: 2022-04-21
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0361/html
Scroll to top button