Startseite Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions

  • Md. Nabul Sardar , Nazia Rahman EMAIL logo , Shahnaz Sultana und Nirmal Chandra Dafader
Veröffentlicht/Copyright: 3. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study focuses on the adsorption of hazardous Cr (III) and Cu (II) ions from aqueous solution by applying modified waste polypropylene (PP) fabric as an adsorbent. Pre-irradiation technique was performed for grafting of sodium styrene sulfonate (SSS) and acrylic acid (AAc) onto the PP fabric. The monomer containing 8% SSS and 16% AAc in water was used. Graft yield at 30 kGy radiation dose was 390% when 4% NaCl was added as additive. The prepared adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The influences of different parameters including pH, contact time, temperature and initial metal ion concentration were also investigated. The equilibrium adsorption data were better fitted to the Langmuir isotherm model with maximum monolayer adsorption capacity 384.62 mg/g for Cr (III) and 188.68 mg/g for Cu (II) ions. The kinetic data were better explained by pseudo first-order kinetic model having good matching between the experimental and theoretical adsorption capacity. The adsorption process was spontaneous, endothermic and thermodynamically feasible. Furthermore, investigation of desorption of metal ions and reuse of the adsorbent suggesting that the adsorbent is an efficient and alternative material in the removal of Cr (III) and Cu (II) from aqueous media.


Corresponding author: Nazia Rahman, Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh, E-mail:

Acknowledgments

The authors gratefully acknowledge the technical support from the International Atomic Energy Commission (IAEA) to carry out this study. We also wish to thank Gamma Source Division of Institute of Food and Radiation Biology, Atomic Energy Research Establishment for providing irradiation facility.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Bernard, E., Jimoh, A., Odigure, J. O. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. Chem. Sci. 2013, 3, 3–9.Suche in Google Scholar

2. Fu, F., Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.Suche in Google Scholar

3. Argun, M. E., Dursun, S., Karatas, M. Removal of Cd (II), Pb (II), Cu (II) and Ni (II) from water using modified pine bark. Desalination 2009, 249, 519–527. https://doi.org/10.1016/j.desal.2009.01.020.Suche in Google Scholar

4. Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., Zheng, S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. https://doi.org/10.1016/j.cej.2009.02.036.Suche in Google Scholar

5. Bennicelli, R., Stȩpniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J. The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 2004, 55, 141–146. https://doi.org/10.1016/j.chemosphere.2003.11.015.Suche in Google Scholar

6. Naushad, Mu., Mittal, A., Rathorec, M., Gupta, V. Ion-exchange kinetic studies for Cd (II), Co (II), Cu (II), and Pb (II) metal ions over a composite cation exchanger. Desalin. Water Treat. 2015, 54, 2883–2890. https://doi.org/10.1080/19443994.2014.904823.Suche in Google Scholar

7. Guimarães, T., Paquini, L. D., Lyrio Ferraz, B. R., Roberto Profeti, L. P., Profeti, D. Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder. J. Environ. Chem. Eng. 2020, 8, 103972; https://doi.org/10.1016/j.jece.2020.103972.Suche in Google Scholar

8. Liu, D., Zou, J., Wang, M., Jiang, W. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour. Technol. 2008, 99, 2628–2636. https://doi.org/10.1016/j.biortech.2007.04.045.Suche in Google Scholar

9. Kocaoba, S., Akcin, G. Removal and recovery of chromium and chromium speciation with MINTEQA. Talanta 2002, 57, 23–30. https://doi.org/10.1016/s0039-9140(01)00677-4.Suche in Google Scholar

10. Mittal, A., Ahmad, R., Hasan, I. Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr (VI) ions from aqueous solution. Desalin. Water Treat. 2015, 57, 15133–15145. https://doi.org/10.1080/19443994.2015.1070764.Suche in Google Scholar

11. Kaszycki, P., Fedorovych, D., Ksheminska, H., Babyak, L., Wójcik, D., Koloczek, H. Chromium accumulation by living yeast at various environmental conditions. Microbiol. Res. 2004, 159, 11–17. https://doi.org/10.1016/j.micres.2003.12.002.Suche in Google Scholar PubMed

12. Suwalsky, M., Castro, R., Villena, F., Sotomayor, C. P. Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models. J. Inorg. Biochem. 2008, 102, 842–849. https://doi.org/10.1016/j.jinorgbio.2007.11.020.Suche in Google Scholar PubMed

13. Li, N., Bai, R. Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep. Purif. Technol. 2005, 42, 237–247. https://doi.org/10.1016/j.seppur.2004.08.002.Suche in Google Scholar

14. Awual, Md. R., Eldesoky, G. E., Yaita, T., Naushad, Mu., Shiwaku, H., AlOthman, Z. A., Suzuki, S. Schiff based ligand containing nano-composite adsorbent for optical copper (II) ions removal from aqueous solutions. Chem. Eng. J. 2015, 279, 639–647. https://doi.org/10.1016/j.cej.2015.05.049.Suche in Google Scholar

15. Schmuhl, R., Krieg, H. M., Keizer, K. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Water SA 2001, 27, 1–7; https://doi.org/10.4314/wsa.v27i1.5002.Suche in Google Scholar

16. Fashola, M. O., Ngole-Jeme, V. M., Babalola, O. O. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. https://doi.org/10.3390/ijerph13111047.Suche in Google Scholar PubMed PubMed Central

17. Safiur Rahman, M., Rafiqul Islam, M. Effects of pH on isotherms modeling for Cu (II) ions adsorption using maple wood sawdust. Chem. Eng. J. 2009, 149, 273–280. https://doi.org/10.1016/j.cej.2008.11.029.Suche in Google Scholar

18. Mittal, A., Ahmad, R., Hasan, I. Poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: synthesis and its application for the removal of heavy metal ions. Desalin. Water Treat. 2016, 57, 19820–19833. https://doi.org/10.1080/19443994.2015.1104726.Suche in Google Scholar

19. Mittal, A., Ahmad, R., Hasan, I. Biosorption of Pb2+, Ni2+ and Cu2+ ions from aqueous solutions by L-cystein-modified montmorillonite-immobilized alginate nanocomposite. Desalin. Water Treat. 2016, 57, 17790–17807. https://doi.org/10.1080/19443994.2015.1086900.Suche in Google Scholar

20. Soni, S., Bajpai, P. K., Mittal, J., Arora, C. Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. J. Mol. Liq. 2020, 314, 113642. https://doi.org/10.1016/j.molliq.2020.113642.Suche in Google Scholar

21. Gupta, V. K., Agarwal, S., Ahmad, R., Mirza, A., Mittal, J. Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite. Int. J. Biol. Macromol. 2020, 158, 1310–1318. https://doi.org/10.1016/j.ijbiomac.2020.05.025.Suche in Google Scholar PubMed

22. Mariyam, A., Mittal, J., Sakina, F., Baker, R. T., Sharma, A. K., Mittal, A. Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arab. J. Chem. 2021, 14, 103186. https://doi.org/10.1016/j.arabjc.2021.103186.Suche in Google Scholar

23. Nayebi, R., Daneshvar Tarigh, G., Shemirani, F. Porous ionic liquid polymer: a reusable adsorbent with broad operating pH range for speciation of nitrate and nitrite. Sci. Rep. 2019, 9, 11130. https://doi.org/10.1038/s41598-019-47648-w.Suche in Google Scholar

24. Mittal, J. Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review. J. Environ. Manage. 2021, 295, 113017. https://doi.org/10.1016/j.jenvman.2021.113017.Suche in Google Scholar

25. Haddad, B., Mittal, A., Mittal, J., Paolone, A., Villemin, D., Debdab, M., Mimanne, G., Habibi, A., Hamidi, Z., Boumediene, M., Belarbi, E. Synthesis and characterization of egg shell (ES) and egg shell with membrane (ESM) modified by ionic liquids. Chem. Data Collect. 2021, 33, 100717; https://doi.org/10.1016/j.cdc.2021.100717.Suche in Google Scholar

26. Saharan, P., Kumar, V., Mittal, J., Sharma, V., Sharma, A. K. Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites. Sep. Sci. Technol. 2021, 56, 2895–2908. https://doi.org/10.1080/01496395.2020.1866608.Suche in Google Scholar

27. Mittal, A., Mittal, J. Hen feather: a remarkable adsorbent for dye removal. In Green Chemistry for Dyes Removal from Wastewater; Sharma, S. K., Ed.; Scrivener Publishing LLC: USA, 2015; pp. 409–457.10.1002/9781118721001.ch11Suche in Google Scholar

28. Yang, S., Li, L., Pei, Z., Li, C., Lv, J., Xie, J., Wen, B., Zhang, S. Adsorption kinetics, isotherms and thermodynamics of Cr (III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 100–106. https://doi.org/10.1016/j.colsurfa.2014.05.062.Suche in Google Scholar

29. Wei, X., Wu, Z., Wu, Z., Ye, B. C. Adsorption behaviors of atrazine and Cr (III) onto different activated carbons in single and co-solute systems. Powder Technol. 2018, 329, 207–216. https://doi.org/10.1016/j.powtec.2018.01.060.Suche in Google Scholar

30. Abukhadra, M. R., Dardir, F. M., Shaban, M., Ahmed, E. A., Soliman, M. F. Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicol. Environ. Saf. 2018, 157, 358–368. https://doi.org/10.1016/j.ecoenv.2018.03.085.Suche in Google Scholar

31. Nasef, M. M. Gamma radiation-induced graft copolymerization of styrene onto poly (ethylene terephthalate) films. J. Appl. Polym. Sci. 2000, 77, 1003–1012. https://doi.org/10.1002/1097-4628(20000801)77:5<1003::aid-app7>3.0.co;2-k.10.1002/1097-4628(20000801)77:5<1003::AID-APP7>3.0.CO;2-KSuche in Google Scholar

32. Synwin, a nonwoven fabric manufacture specialized in the production of non woven tablecloths, agriculture non woven fabric, and medical non woven fabric. https://www.synwinchina.com/ (accessed Dec 30, 2021).Suche in Google Scholar

33. Lee, S. W., Bondar, Y., Han, D. H. Synthesis of a cation-exchange fabric with sulfonate groups by radiation-induced graft copolymerization from binary monomer mixtures. React. Funct. Polym. 2008, 68, 474–482. https://doi.org/10.1016/j.reactfunctpolym.2007.10.036.Suche in Google Scholar

34. Sugiyama, S., Tsuneda, S., Saito, K., Furusaki, S., Sugo, T., Makuuchi, K. Attachment of sulfonic acid groups to various shapes of polyethylene, polypropylene and polytetrafluoroethylene by radiation-induced graft polymerization. React. Polym. 1993, 21, 187–191. https://doi.org/10.1016/0923-1137(93)90121-u.Suche in Google Scholar

35. Kitaeva, N. K., Duflot, V. R., Ilicheva, N. S. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene. J. Radioanal. Nucl. Chem. 2013, 298, 1041–1047. https://doi.org/10.1007/s10967-013-2688-3.Suche in Google Scholar

36. Vandenbossche, M., Jimenez, M., Casetta, M., Bellayer, S., Bourbigot, S., Traisnel, M. Sorption of heavy metals on a chitosan-grafted-polypropylene nonwoven geotextile. In Proceedings of the 16th International Conference of the Heavy Metals in the Environment, Rome, Italy, September 23–27, 2012.10.1051/e3sconf/20130105003Suche in Google Scholar

37. Wei, P., Lou, H., Xu, X., Xu, W., Yang, H., Zhang, W., Zhang, Y. Preparation of PP non-woven fabric with good heavy metal adsorption performance via plasma modification and graft polymerization. Appl. Surf. Sci. 2021, 539, 148195. https://doi.org/10.1016/j.apsusc.2020.148195.Suche in Google Scholar

38. Gupta, B. D., Chapiro, A. Preparation of ion-exchange membranes by grafting acrylic acid into pre-irradiated polymer films. 1 Grafting into polyethylene. Eur. Polym. J. 1989, 25, 1137–1143. https://doi.org/10.1016/0014-3057(89)90170-5.Suche in Google Scholar

39. Taher, N. H., Dessouki, A. M., Khalil, F. H. Radiation grafting of acrylic acid onto polypropylene films. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 1990, 36, 785–790. https://doi.org/10.1016/1359-0197(90)90179-l.Suche in Google Scholar

40. Tan, C. H., Moo, Y. C., Mat Jafri, M. Z., Lim, H. S. UV spectroscopy determination of aqueous lead and copper ions in water. Opt. Sens. Detect. III 2014, 9141, 91410N. https://doi.org/10.1117/12.2052349.Suche in Google Scholar

41. Hamada, Y. Z., Makoni, N., Hamada, H. Three very different UV-VIS absorption spectra of three different transition metals found in biological solutions. Electron. J. Biol. 2016, 12, 6–9.Suche in Google Scholar

42. Hassan, M. I. U., Taimur, S., Yasin, T. Upcycling of polypropylene waste by surface modification using radiation-induced grafting. Appl. Surf. Sci. 2017, 422, 720–730. https://doi.org/10.1016/j.apsusc.2017.06.086.Suche in Google Scholar

43. Zundel, G. Hydration structure and intermolecular interaction in polyelectrolytes. Angew. Chem. Int. Ed. Engl. 1969, 8, 499–509. https://doi.org/10.1002/anie.196904991.Suche in Google Scholar

44. Li, X., Zhang, D., Sheng, F., Qing, H. Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicol. Environ. Saf. 2018, 147, 357–366. https://doi.org/10.1016/j.ecoenv.2017.08.058.Suche in Google Scholar PubMed

45. Kyaw, T. T., Wint, K. S., Naing, K. M. Studies on the sorption behavior of dyes on cross-linked chitosan beads in acid medium. In Proceedings of the International Conference of Biomedical Engineering and Technology, Kuala Lumpur, June 4–5, 2011.Suche in Google Scholar

46. El-Sayed, E. M., Tamer, T. M., Omer, A. M., Mohy Eldin, M. S. Development of novel chitosan schiff base derivatives for cationic dye removal: methyl orange model. Desalin. Water Treat. 2016, 57, 22632–22645. https://doi.org/10.1080/19443994.2015.1136694.Suche in Google Scholar

47. Mall, I. D., Srivastava, V. C., Agarwal, N. K., Mishra, I. M. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 2005, 61, 492–501. https://doi.org/10.1016/j.chemosphere.2005.03.065.Suche in Google Scholar PubMed

48. Foo, K. Y., Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013.Suche in Google Scholar

49. Arslanoglu, H., Altundogan, H. S., Tumen, F. Heavy metals binding properties of esterified lemon. J. Hazard. Mater. 2009, 164, 1406–1413. https://doi.org/10.1016/j.jhazmat.2008.09.054.Suche in Google Scholar PubMed

50. Xu, D., Tan, X. L., Chen, C. L., Wang, X. K. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl. Clay Sci. 2008, 41, 37–46. https://doi.org/10.1016/j.clay.2007.09.004.Suche in Google Scholar

51. Vimala, R., Das, N. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. J. Hazard. Mater. 2009, 168, 376–382. https://doi.org/10.1016/j.jhazmat.2009.02.062.Suche in Google Scholar PubMed

52. Erdem, B., Özcan, A., Gök, Ö., Özcan, A. S. Immobilization of 2,2′-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions. J. Hazard. Mater. 2009, 163, 418–426. https://doi.org/10.1016/j.jhazmat.2008.06.112.Suche in Google Scholar PubMed

Received: 2021-06-06
Accepted: 2021-11-12
Published Online: 2022-01-03
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0177/pdf
Button zum nach oben scrollen