Home Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers
Article
Licensed
Unlicensed Requires Authentication

Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers

  • D. G. K. Kalara Namawardana , R. M. Geethanjana Wanigasekara , W. T. M. Aruna P. K. Wanninayake , K. M. D. Charith Jayathilaka , Ruwan P. Wijesundera ORCID logo , Withana Siripala and Muhammad Imran Malik
Published/Copyright: January 13, 2022
Become an author with De Gruyter Brill

Abstract

Polymer based organic solar cells (OSCs) are of tremendous interest as suitable candidates for producing clean and renewable energy in recent years. In this study, inverted OSCs on stainless steel (SS) substrate with zinc oxide (ZnO) as the electron selective transport layer (ESTL), are investigated, occupying bulk heterojunction blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and poly-(4,3-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole transport layer (HTL). The device structure is SS/ZnO/P3HT:PCBM/PEDOT:PSS/Au. ZnO films are prepared by spin coating and electrodeposition techniques, followed by annealing under ambient conditions. The insertion of ZnO layer between the SS substrate and active layer has improved short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) compared to those of the reference cell without ZnO layer, achieving the highest efficiency of 0.66% for the device with spin coated ZnO from sol–gel technique. This enhancement can be attributed to the effective electron extraction and the increased crystallinity of ZnO after annealing treatments at higher temperatures as further confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses.


Corresponding author: Ruwan P. Wijesundera, Department of Physics and Electronics, University of Kelaniya, Dalugama Kelaniya 11300, Sri Lanka, Email:

Award Identifier / Grant number: NSF-PSF/ICRP/2017EA&ICT/02

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the National Science Foundation (NSF), Sri Lanka through research grant NSF-PSF/ICRP/2017EA&ICT/02.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sun, Y., Liu, T., Kan, Y., Gao, K., Tang, B., Li, Y. Flexible organic solar cells: progress and challenges. Small Sci. 2021, 1, 2100001; https://doi.org/10.1002/smsc.202100001.Search in Google Scholar

2. Qin, J., Lan, L., Chen, S., Huang, F., Shi, H., Chen, W., Xia, H., Sun, K., Yang, C. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 2020, 5, 2002529; https://doi.org/10.1002/adfm.202002529.Search in Google Scholar

3. Finn, M., Martens, C. J., Zaretski, A. V., Roth, B., Søndergaard, R. R., Krebs, F. C., Lipomi, D. J. Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsion. Sol. Energy Mater. Sol. Cells 2018, 174, 7–15; https://doi.org/10.1016/j.solmat.2017.08.015.Search in Google Scholar

4. Zhang, M., Zhu, L., Zhou, G., Hao, T., Qiu, C., Zhao, Z., Hu, Q., Larson, B. W., Zhu, H., Ma, Z., Tang, Z. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 2021, 12, 309–318; https://doi.org/10.1038/s41467-020-20580-8.Search in Google Scholar PubMed PubMed Central

5. Berger, P. R., Kim, M. Polymer solar cells: P3HT:PCBM and beyond. J. Renew. Sustain. Energy 2018, 10, 013508; https://doi.org/10.1063/1.5012992.Search in Google Scholar

6. Laird, D. W., Vaidya, S., Li, S., Mathai, M., Woodworth, B., Sheina, E., Williams, S., Hammond, T. Advances in Plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells. Proc. SPIE 6656: Org. Photovoltaics VIII 2007, 66560X; https://doi.org/10.1117/12.734711.Search in Google Scholar

7. Abdallaoui, M., Sengouga, N., Chala, A., Meftah, A. F., Meftah, A. M. Comparative study of conventional and inverted P3HT: PCBM organic solar cell. Opt. Mater. 2020, 105, 109916; https://doi.org/10.1016/j.optmat.2020.109916.Search in Google Scholar

8. Bowers, N. M., Muller, T. F. G., Arendse, C. J., Oliphant, C. J., Cummings, F. R. Influence of the modification of annealing parameters on solution-processed metal oxide ETL buffer layers, and a comparative study of spin-coated and thermally evaporated MoOx HTL for use in an inverted polymer solar cell. Mater. Today Proc. 2021, 36, 219–227; https://doi.org/10.1016/j.matpr.2020.03.206.Search in Google Scholar

9. Lu, S., Sun, Y., Ren, K., Liu, K., Wang, Z., Qu, S. Recent development in ITO-free flexible polymer solar cells. Polymers 2018, 10, 5–34; https://doi.org/10.3390/polym10010005.Search in Google Scholar PubMed PubMed Central

10. Hofmann, A. I., Cloutet, E., Hadziioannou, G. Materials for transparent electrodes: from metal oxides to organic alternatives. Adv. Electron. Mater. 2018, 4, 1700412; https://doi.org/10.1002/aelm.201700412.Search in Google Scholar

11. Huseynova, G., Kim, Y. H., Lee, J.-H., Lee, J. Rising advancements in the application of PEDOT:PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. J. Inf. Disp. 2020, 21, 71–91; https://doi.org/10.1080/15980316.2019.1707311.Search in Google Scholar

12. Jeon, I., Xiang, R., Shawky, A., Matsuo, Y., Maruyama, S. Single-walled carbon nanotubes in emerging solar cells: synthesis and electrode applications. Adv. Energy Mater. 2018, 9, 1801312; https://doi.org/10.1002/aenm.201801312.Search in Google Scholar

13. Dong, X., Shi, P., Sun, L., Li, J., Qin, F., Xiong, S., Liu, T., Jianga, X., Zhou, Y. Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11.6%. J. Mater. Chem. A 2019, 7, 1989–1995.10.1039/C8TA11378ESearch in Google Scholar

14. Bi, Y.-G., Liu, Y.-F., Zhang, X.-L., Yin, D., Wang, W.-Q., Feng, J., Sun, H.-B. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic Devices. Adv. Opt. Mater. 2019, 7, 1800778; https://doi.org/10.1002/adom.201800778.Search in Google Scholar

15. Lee, H. B., Jin, W.-Y., Ovhal, M. M., Kumar, N., Kang, J.-W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 2019, 7, 1087–1110; https://doi.org/10.1039/c8tc04423f.Search in Google Scholar

16. Kumar, V., Wang, H. Selection of metal substrates for completely solution-processed inverted organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 2013, 113, 179–185; https://doi.org/10.1016/j.solmat.2013.02.010.Search in Google Scholar

17. Galagan, Y., Moet, D. J. D., Hermes, D. C., Blom, P. W. M., Andriessen, R. Large area ITO-free organic solar cells on steel substrate. Org. Electron. 2012, 13, 3310–3314; https://doi.org/10.1016/j.orgel.2012.09.039.Search in Google Scholar

18. Pali, L. S., Ganesan, P., GargInverted, A. P3HT PCBM organic solar cells on low carbon steel substrates. Sol. Energy 2016, 133, 339–348; https://doi.org/10.1016/j.solener.2016.03.061.Search in Google Scholar

19. Pali, L. S., Gupta, S. K., Garg, A. Organic solar cells on Al electroded opaque substrates: assessing the need of ZnO as electron transport layer. Sol. Energy 2018, 160, 396–403; https://doi.org/10.1016/j.solener.2017.12.028.Search in Google Scholar

20. Patil, B. R., Shanmugam, S., Teunissen, J.-P., Galagan, Y. All-solution processed organic solar cells with top illumination. Org. Electron. 2015, 21, 40–46; https://doi.org/10.1016/j.orgel.2015.02.028.Search in Google Scholar

21. Teraji, S., Chantana, J., Watanabe, T., Minemoto, T. Development of flexible Cd-free Cu(In,Ga)Se2 solar cell on stainless steel substrate through multi-layer precursor method. J. Alloys Compd. 2018, 756, 111–116; https://doi.org/10.1016/j.jallcom.2018.05.024.Search in Google Scholar

22. Sun, K., Liu, F., Huang, J., Yan, C., Song, N., Sun, H., Xue, C., Zhang, Y., Pu, A., Shen, Y., Stride, J. A., Green, M., Hao, X. Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Sol. Energy Mater. Sol. Cells 2018, 182, 14–20; https://doi.org/10.1016/j.solmat.2018.02.036.Search in Google Scholar

23. Chang, Y.-M., Chen, C.-P., Ding, J.-M., Leu, C.-Y., Lee, M.-J., Chen, R.-D. Top-illuminated organic solar cells fabricated by vacuum-free and all-solution processes. Sol. Energy Mater. Sol. Cells 2013, 109, 91–96; https://doi.org/10.1016/j.solmat.2012.09.020.Search in Google Scholar

24. Gupta, D., Wienk, M. M., Janssen, R. A. J. Efficient polymer solar cells on opaque substrates with a laminated PEDOT:PSS top electrode. Adv. Energy Mater. 2013, 3, 782–787; https://doi.org/10.1002/aenm.201201061.Search in Google Scholar

25. Zhang, Q., Peng, R., Zhang, C., Chen, D., Lin, Z., Chang, J., Zhang, J., Hao, Y. Inverted organic solar cells with low-temperature Al-doped-ZnO electron transport layer processed from aqueous solution. Polymers 2018, 10, 127–139; https://doi.org/10.3390/polym10020127.Search in Google Scholar PubMed PubMed Central

26. Al-Shekaili, N., Hashim, S., Muhammadsharif, F. F., Al-Abri, M. Z., Sulaiman, K., Yahya, M. Y., Ahmad, M. R. Enhanced performance of PTB7:PC71BM based organic solar cells by incorporating a nano-layered electron transport of titanium oxide. ECS J. Solid State Sci. Technol. 2020, 9, 105003; https://doi.org/10.1149/2162-8777/abc1c1.Search in Google Scholar

27. Wei, J., Zhang, C., Ji, G., Han, Y., Ismail, I., Li, H., Luo, Q., Yang, J., Ma, C.-Q. Roll-to-roll printed stable and thickness-independent ZnO:PEI composite electron transport layer for inverted organic solar cells. Sol. Energy 2019, 193, 102–110; https://doi.org/10.1016/j.solener.2019.09.037.Search in Google Scholar

28. Fei1, X., Jiang, D., Wang, N., Zhao, H., Xing, M., Li, H. Study on ultraviolet photodetector modified by Au nanoparticles on ZnO nanowires. J. Phys.: Conf. Ser. 1907, 2021, 012044.10.1088/1742-6596/1907/1/012044Search in Google Scholar

29. Winkler, N., Edinger, S., Kautek, W., Dimopoulos, T. Mg-doped ZnO films prepared by chemical bath deposition. J. Mater. Sci. 2018, 53, 5159–5171; https://doi.org/10.1007/s10853-017-1959-8.Search in Google Scholar

30. Rahal, H., Kihal, R., Affoune, A. M., Ghers, M., Djazi, F. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J. Semiconduct. 2017, 38, 053002; https://doi.org/10.1088/1674-4926/38/5/053002.Search in Google Scholar

31. Maroufa, S., Beniaichea, A., Guessasa, H., Azizib, A. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method. Mater. Res. 2017, 20, 88–95.10.1590/1980-5373-mr-2015-0751Search in Google Scholar

32. Muchuweni, E., Sathiaraj, T. S., Nyakotyo, H. Effect of annealing on the microstructural, optical and electrical properties of ZnO nanowires by hydrothermal synthesis for transparent electrode fabrication. Mater. Sci. Eng. B 2018, 227, 68–73; https://doi.org/10.1016/j.mseb.2017.10.006.Search in Google Scholar

33. Noh, Y.-J., Na, S.-I., Kim, S.-S. Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis. Sol. Energy Mater. Sol. Cells 2013, 117, 139–144; https://doi.org/10.1016/j.solmat.2013.05.062.Search in Google Scholar

34. Lin, C.-C., Tsai, S.-K., Chang, M.-Y. Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells. Org. Electron. 2017, 46, 218–225; https://doi.org/10.1016/j.orgel.2017.04.006.Search in Google Scholar

35. Ojo, A. A., Dharmadasa, I. M. Electroplating of semiconductor materials for applications in large area electronics: a review. Coatings 2018, 8, 262–278; https://doi.org/10.3390/coatings8080262.Search in Google Scholar

36. Arif, M., Sanger, A., Vilarinho, P. M., Singh, A. Effect of annealing temperature on structural and optical properties of sol-gel-derived ZnO thin films. J. Electron. Mater. 2018, 47, 3678–3684; https://doi.org/10.1007/s11664-018-6217-6.Search in Google Scholar

37. Muhammad, F. F., Sangawi, A. W. K., Hashim, S., Ghoshal, S. K., Abdullah, I. K. Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 2019, 14, e0216201; https://doi.org/10.1371/journal.pone.0216201.Search in Google Scholar PubMed PubMed Central

38. Quan, C., He, Y. Properties of nanocrystalline Cr coatings prepared by cathode plasma electrolytic deposition from trivalent chromium electrolyte. Surf. Coating. Technol. 2015, 269, 319–323; https://doi.org/10.1016/j.surfcoat.2015.02.001.Search in Google Scholar

39. Post, B., Weissmann, S., McMurdie, H. F., Eds. Joint Committee on Powder Diffraction standards. Inorganic Vol., Card No. 36-1451; Swarthmore, PA, 1990.Search in Google Scholar

40. Munshi, J., Dulal, R., Chien, T., Chen, W., Balasubramanian, G. Solution processing dependent bulk heterojunction nanomorphology of P3HT/PCBM thin films. ACS Appl. Mater. Interfaces 2019, 11, 17056–17067; https://doi.org/10.1021/acsami.9b02719.Search in Google Scholar PubMed

41. Ma, Z., Tang, Z., Wang, E., Andersson, M. R., Inganäs, O., Zhang, F. Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells. J. Phys. Chem. C 2012, 116, 24462–24468; https://doi.org/10.1021/jp308480u.Search in Google Scholar

42. Tsai, J.-H., Tsai, M.-C., Sung, C.-Y., Huang, P.-T. Significant increase in current density of inverted polymer solar cells by induced-crystallization of sol-gel ZnO embedded with ZnO-NP. Org. Electron. 2020, 86, 105891; https://doi.org/10.1016/j.orgel.2020.105891.Search in Google Scholar

43. Friedel, B., Keivanidis, P. E., Brenner, T. J. K., Abrusci, A., McNeill, C. R., Friend, R. H., Greenham, N. C. Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 2009, 42, 6741–6747; https://doi.org/10.1021/ma901182u.Search in Google Scholar

44. Rafique, S., Abdullah, S. M., Sulaiman, K., Iwamoto, M. Fundamentals of bulk heterojunction organic solar cells: an overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53; https://doi.org/10.1016/j.rser.2017.12.008.Search in Google Scholar

45. Al-Shekaili, N., Hashim, S., Muhammadsharif, F. F. Efficiency and stability improvement of organic solar cells based on PTB7: PCBM through hot-substrate coating. J. Electron. Mater. 2021, 50, 6828–6835; https://doi.org/10.1007/s11664-021-09238-3.Search in Google Scholar

46. Cheng, P., Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582; https://doi.org/10.1039/c5cs00593k.Search in Google Scholar PubMed

Received: 2021-09-24
Accepted: 2021-11-26
Published Online: 2022-01-13
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0280/html
Scroll to top button