Home Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives
Article
Licensed
Unlicensed Requires Authentication

Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives

  • Fatima Zohra Boubekri , Amal Benkhaled and Zineb Elbahri ORCID logo EMAIL logo
Published/Copyright: January 8, 2022
Become an author with De Gruyter Brill

Abstract

Novel bio-composite films based on Algerian earth chestnut i.e. Bunium incrassatum roots (Talghouda, TG) and cellulose derivatives (ethylcellulose; EC and cellulose acetate; AC) are prepared and tested for methylene blue (MB) adsorption from aqueous solutions. The biomaterial films are elaborated by dissolution solvent evaporation technique and are characterized by infrared spectroscopy, X-ray diffraction, SEM and optical microscopy. The pHpzc is also determined. For the adsorption tests, design of experiments based on 23 factorial design is built and followed. So, the effects of TG:EC:AC ratio, pH and MB initial concentration are discussed on the basis of mathematical modelling using Minitab software. Mathematical relations between equilibrium adsorption percentages and capacities versus selected variables were obtained and illustrated by surface plots. The interactive effects between variables have been also identified. The results showed that the MB adsorption percentage exceeded 83% and is mostly affected by pH value. Nevertheless the adsorption capacity is affected by MB initial concentration.


Corresponding author: Zineb Elbahri, Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes, Université Djillali Liabès de Sidi Bel Abbes, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes 22000, Algeria, E-mail:

Funding source: Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de l’Algérie

Funding source: Direction Générale de la Recherche Scientifique et du Développement Technologique

Acknowledgements

The authors gratefully thank the institutions: “Ministère de l'enseignement supérieur et de la recherche scientifique” and “Direction Générale de la Recherche Scientifique et du Développement Technologique” of Algeria for supporting the doctorate project and for the SNDL documentation database. The authors wish also to gratefully acknowledge Prof. K. Guemra (Laboratoire de chimie organique physique et macromoléculaire, Djillali Liabes university of Sidi Bel Abbes, Algeria) and Prof. N. Choukchou-Braham (laboratory of catalysis and synthesis in organic chemistry of Tlemcen, Algeria) for the optical microscopy images and DRX analysis respectively.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The present work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de l’Algérie.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Christopher, P., Weis, E., Donald, E. T. Chemical water pollution and human health. In Integrative environmental medicine; Aly, C., Frederick, S., Vom, S., Eds.; Oxford University Press: Oxford, 2017.Search in Google Scholar

2. Komal, J., Veerendra, S., Gurjar, B. R. Water pollution, human health and remediation. In Water Remediation: Energy, Environment, and Sustainability; Bhattacharya, S., Gupta, A. B., Gupta, A., Pandey, A., Eds.; Springer Nature Singapore Pte Ltd: Singapore, 2018.Search in Google Scholar

3. Sajjad, H., Khan, N., Gul, S., Khan, S., Khan, H. Contamination of water resources by food dyes and its removal technologies. In Water Chemistry; Murat, E., Ed.; IntechOpen: United Kingdom, 2019.Search in Google Scholar

4. Muhammad, I., Kalsoom, A., Khan, M. I., Tahseen, K., Ali Khan, M., Abdullah, M., Seo, J., Bahadar Khan, S. Pollution-toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3653–3671.10.2174/1381612825666191021142026Search in Google Scholar

5. Junielly, T. D., Ricardo, M. O., Ruben, D. S., Pinzón-García, A. D., Dias, G. R. Polymer-bixinnanofibers: a promising environmentally friendly material for the removal of dyes from water. Sep. Purif. Technol. 2020, 248, 117–118.10.1016/j.seppur.2020.117118Search in Google Scholar

6. Gahlot, R., Taki, K., Kumar, M. Efficacy of nanoclays as the potential adsorbent for dyes and metal removal from the wastewater: a review. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100339.10.1016/j.enmm.2020.100339Search in Google Scholar

7. Sakthisharmila, P., Palanisamy, N., Mukesh, K. A., Balasubramani, R., Chang, S. W., Manikandan, P., Dinh, D. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J. Water Supply Res. Technol. 2020, 69(Suppl. 4), 345–354.10.2166/aqua.2020.109Search in Google Scholar

8. Muhammad, A. R., Salman, A. S. Survey of recent trends in biochemically assisted degradation of dyes. Chem. Eng. J. 2012, 209, 520–530.10.1016/j.cej.2012.08.015Search in Google Scholar

9. Cruz, C. V., Acuña, D. L. Microbial bioremediation of azo dye through microbiological approach. In Emerging Technollogies in Environmental Bioremediation; Maulin, P. S., Rodriguez-Couto, S., Şengör, S., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 425–441.10.1016/B978-0-12-819860-5.00019-5Search in Google Scholar

10. Vanitha, K., Jibrail, K., Sie, Y. L. Efficiency of various recent wastewater dye removal methods. J. Environ. Chem. Eng. 2018, 6, 4676–4697.Search in Google Scholar

11. Brigham, C. Chapter 3.22-biopolymers and biodegradable alternatives to traditional plastics. In Green Chemistry an Inclusive Approach; Elsevier: New York, 2018, pp. 753–770.10.1016/B978-0-12-809270-5.00027-3Search in Google Scholar

12. Silva, F. C., Luciano, C. B., Lima, B., Roosevelt, D. S., Osajima, A. J., Silva-Filho, E. C. Use of cellulosic materials as dye adsorbents. In Cellulose Fundamental Aspects and Current Trends; Matheus, P., Heitor, L. O. J., Eds.; IntechOpen: London, United Kingdom, 2015.10.5772/61343Search in Google Scholar

13. Lin, T., Goos, E., Riedel, U. A sectional approach for biomass: modelling the pyrolysis of cellulose. Fuel Process. Technol. 2013, 115, 246–253.10.1016/j.fuproc.2013.03.048Search in Google Scholar

14. Behjat, T. Cellulose-based polymers for packaging applications. In Lignocellulosic Polymer Composites, Chap 21; Vijay, K. T., Ed.; Scrivener Publishing LLC: Beverly, United states, 2014.Search in Google Scholar

15. Bharti, V., Vikrant, K., Goswami, M., Tiwari, H., SonwaniR, K., Daniel, J. L., Tsang, C. W., Kim, K. H., Saeed, M., Kumar, S., Rai, B. N., Giri, B. S., Singh, R. S. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ. Res. 2019, 171, 356–364.10.1016/j.envres.2019.01.051Search in Google Scholar PubMed

16. Katheresan, V., Kansedo, J., Lau, S. Y. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 2018, 6, 4676–4697.10.1016/j.jece.2018.06.060Search in Google Scholar

17. Somsesta, N., Sricharoen, V., Duangdao, S. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater. Chem. Phys. 2020, 240, 122221.10.1016/j.matchemphys.2019.122221Search in Google Scholar

18. Siswanta, D., Wahyuni, R., Mudasir, M. Synthesis of glutaraldehyde-crosslinked carboxymethyl cellulose-polyvinyl alcohol film as an adsorbent for methylene blue. Eng. Mater. 2020, 840, 35–42.10.4028/www.scientific.net/KEM.840.35Search in Google Scholar

19. Cheng, J., Zhan, C., Wu, J., Cui, Z., Si, J., Wang, Q., Peng, X., Turng, L. S. Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 2020, 5, 5389–5400.10.1021/acsomega.9b04425Search in Google Scholar PubMed PubMed Central

20. Jun, L., Karri, R., Mubarak, N., Yon, L., Bing, C., Khalid, M., Jagadish, P., Abdullah, C. Modelling of methylene blue adsorption using peroxidase immobilized functionalized Buckypaper/polyvinyl alcohol membrane via ant colony optimization. Environ. Pollut. 2020, 259, 113940.10.1016/j.envpol.2020.113940Search in Google Scholar PubMed

21. Duan, J., Reddy, K., Ashok, B., Cai, J., Zhang, L., Varada, A. Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. J. Environ. Chem. Eng. 2016, 4, 440–448.10.1016/j.jece.2015.11.029Search in Google Scholar

22. Mahmoud, E., Abdelwahab, S. Fabricated and functionalized magnetite/phenylenediamine/cellulose acetate nanocomposite for adsorptive removal of methylene blue. Int. J. Biol. Macromol. 2019, 128, 196–203.10.1016/j.ijbiomac.2019.01.102Search in Google Scholar PubMed

23. Sabarish, R., Unnikrishnan, G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 2018, 199, 129–140.10.1016/j.carbpol.2018.06.123Search in Google Scholar PubMed

24. Luo, J., Huang, K., Zhou, X., Xu, Y. Hybrid films based on holistic celery nanocellulose and lignin/hemicellulose with enhanced mechanical properties and dye removal. Inter. J. Biol. Macromol. 2020, 147, 699–705.10.1016/j.ijbiomac.2020.01.102Search in Google Scholar PubMed

25. Bousetla, A., Zellagui, A., Derouiche, K., Rhouati, S. Chemical constituents of the roots of Algerian Bunium incrassatum and evaluation of its antimicrobial activity. Arab. J. Chem. 2015, 8, 313–316.10.1016/j.arabjc.2011.01.022Search in Google Scholar

26. Quezel, P., Santa, S., Eds. Nouvelle flore de l’Algérie et des régions désertiques et Méridionales II; Centre National de la Recherche Scientifique: Paris, 1963.Search in Google Scholar

27. Jassbi, A. R., Mehrdad, M., Soleimani, M., Mirzaeian, M., Sonboli, A. Chemical Composition of the essential oils of Bunium elegans and Bunium caroides. Chem. Nat. Compd. 2005, 41, 415–417.10.1007/s10600-005-0165-0Search in Google Scholar

28. Benkhalifa, A., Toumi, M. Talghouda une ancienne source alimentaire bien évoquée dans les soins traditionnels en Algérie, A, 2019. https://www.researchgate.net/publication/338023219 (accessed Dec, 2019).Search in Google Scholar

29. Boudghene, O., Stambouli, B., Sebbagh, B. Toxidermie induite par phytothérapie: la châtaigne de terre ou talghouda. Rev. Fr. Allergol. 2018, 58, 248–249.10.1016/j.reval.2018.02.076Search in Google Scholar

30. Chentouh, S., Boulahbel, S., Adjal, F., Tolba, M., Alloua, N., MoumenY, BentayebY Effets des extraits organiques de Bunium incrassatum sur quelques paramètres hématologiques chez les lapines de population la race locale. Revue des BioResources 2018, 8, 34–42.Search in Google Scholar

31. Senouci, F., Ababou, A., Chouieb, M. Ethno-botanical survey of the medicinal plants used in the southern mediterranean: the region of Dissa north-eastern Dahra mountains, Algeria. Pharmacog. J. 2019, 11, 647–659.10.5530/pj.2019.11.103Search in Google Scholar

32. Battandier, A., Trabut, H. Bunium incrassatum. In Flore d’Algérie; Alger Typographie Adolphe Jourdan, 1888; pp. 345–346.Search in Google Scholar

33. Umair, B., Mohammad, K., Gondal, M. A. Removal of hazardous azo dye from water using synthetic nano-adsorbent: facile synthesis, characterization, adsorption, regeneration and design of experiments. Colloids Surf. A. 2020, 584, 124031.10.1016/j.colsurfa.2019.124031Search in Google Scholar

34. Muthukkumaran, A., Aravamudan, K. Combined Homogeneous Surface Diffusion Model Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects. J. Environ. Manage. 2017, 204, 424–435.10.1016/j.jenvman.2017.09.010Search in Google Scholar

35. Gamze, N. T., Sermin, E., Başak, M. Adsorption of copper and zinc ions on illite: determination of the optimal conditions by the statistical design of experiments. App. Clay Sci. 2011, 52, 392–399.10.1016/j.clay.2011.04.010Search in Google Scholar

36. Belmokhtar, F. Z., Elbahri, Z., Elbahri, M. Preparation and optimization of agrochemical 2,4-D controlled release microparticles using designs of experiments. J. Mex. Chem. Soc. 2018, 62, 1–19.10.29356/jmcs.v62i1.579Search in Google Scholar

37. Assas, N., Elbahri, Z., Baitiche, M., Djerboua, F. Effects of some process parameters on the niflumic acid controlled release polymeric microspheres: optimization using designs of experiments. Asia Pac. J. Chem. Eng. 2019, 14, e2283.10.1002/apj.2283Search in Google Scholar

38. Packa, A., Sonja, U., Gjorgji, P., Bosilka, S., Blagica, M., Rumenka, P., Petre, M. Development and experimental design of a novel controlled-release matrix tablet formulation for indapamide hemihydrate. Pharm. Dev. Technol. 2017, 22, 851–859.10.3109/10837450.2015.1089898Search in Google Scholar

39. Ganesh, K. M. Re: what is the exact procedure for measuring pHzpc using the pH drift method? 2016. https://www.researchgate.net/post/What-is-the-exact-procedure-for-measuring-pHzpc-using-the-pH-drift-method/56cfd743b0366db3507d9b5f/citation/download.Search in Google Scholar

40. Nordine, N., El Bahri, Z., Sehil, H., Fertout, R. I., Rais, Z., Bengharez, Z. Lead removal kinetics from synthetic effluents using Algerian pine, beech and fir sawdust’s: optimization and adsorption mechanism. Appl. Water Sci. 2016, 6, 439–358.10.1007/s13201-014-0233-3Search in Google Scholar

41. Lagergren, S., Vetenskapsakad, K. About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898, 24, 1–39.Search in Google Scholar

42. Ho, Y. S., Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.10.1016/S0032-9592(98)00112-5Search in Google Scholar

43. Weber, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60.10.1061/JSEDAI.0000430Search in Google Scholar

44. Prachayawarakorn, J., Tamseekhram, J. Chemical modification of biodegradable cassava starch films by natural mono-, di-and tri-carboxylic acids. Songklanakarin J. Sci. Technol. 2019, 41, 355–362.Search in Google Scholar

45. Mahendra, K. T., Alice, B., Dahryn, T., Gopal, N., Rakesh, K. M., Snehasis, J. Characterization of physicochemical and thermal properties of biofield treated ethyl cellulose and methyl cellulose. Int. J. Biomed. Mater. Res. 2015, 3, 83–91.Search in Google Scholar

46. Rohadi, T. N., Ridzuan, M. J. M., Abdul Majid, M. S., Khasri, A., Sulaiman, M. H. Isolation and characterisation of cellulose from cortex, pith and whole of the Pennisetum purpureum: effect of sodium hydroxide concentration. J. Mater. Res. Technol. 2020, 9, 15057–15071.10.1016/j.jmrt.2020.10.102Search in Google Scholar

47. Diana, C., Florin, C., Valentin, I. P. Amorphous cellulose structure and characterization. Cellulose Chem. Technol. 2011, 45, 13–21.Search in Google Scholar

48. Trivedi, M. K., Branton, A., Trivedi, D., Nayak, G., Mishra, R. K., Jana, S. Characterization of physicochemical and thermal properties of biofield treated ethyl cellulose and methyl cellulose. Int. J. Biomed. Mater. Res. 2015, 3, 83–91.Search in Google Scholar

49. Ritika, B., Narpinder, S., Amritpal, K., Naoyoshi, I. Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: a comparative study. J. Food Sci. Technol. 2018, 55, 3799–3808.10.1007/s13197-018-3342-4Search in Google Scholar PubMed PubMed Central

50. Haque, A. N. M. A., Remadevi, R., Rojas, O. J., Wang, X., Naebe, M. Kinetics and equilibrium adsorption of methylene blue onto cotton gin trash bioadsorbents. Cellulose 2020, 27, 6485–6504.10.1007/s10570-020-03238-ySearch in Google Scholar

51. Chengmei, S., Furong, T., Yuezhi, C. Evaluation of nitriloacetic acid modified cellulose film on adsorption of methylene blue. Int. J. Biol. Macromol. 2018, 114, 400–407.10.1016/j.ijbiomac.2018.03.146Search in Google Scholar PubMed

52. Madhuri, L., Megha, M., Kashinath, B., Rajendra, K., Vanja, K. Nanocomposite films prepared from differently modified ZSM-5 zeolite and cellulose nanofibrils for cationic and anionic dyes removal. Fibers Polym. 2019, 20, 2127–2139.10.1007/s12221-019-1139-3Search in Google Scholar

53. Tapas, R. S., Benedicte, P. Chapter 7 - adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In Micro and Nano Technologies, Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B., Freyria, F. S., Rossetti, I., Sethi, R., Eds. Elsevier: New York, 2020; pp. 161–222.Search in Google Scholar

Received: 2021-08-30
Accepted: 2021-11-23
Published Online: 2022-01-08
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0252/html
Scroll to top button