Preparation of hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membranes by polymer/non-solvent co-induced phase separation: effect of coagulation bath temperature
Abstract
Membrane separation technology is widely used in wastewater purification, but the issue of membrane fouling could not be ignored. Hydrophilic modification is an effective method to reduce membrane fouling. Therefore, in this work, a hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membrane was prepared by polymer/non-solvent co-induced phase separation, and the effect of coagulation bath temperature on the membrane structure and performance was systematically investigated based on the previous study. With the increased of the coagulation bath temperature, the phase separation process changed from delayed to instantaneous, and the membrane surface changed from porous to dense, while the macropore structures and sponge-like pores appeared on the cross-section. Meanwhile, the pure water flux decreased from 229.3 L/(m2·h) to 2.08 L/(m2·h), the protein rejection rate increased from 83.87% to 100%, and the surface water contact angle increased from 63° to 90°. Thus, excessively high coagulation bath temperature adversely affected the permeate and separation performance, as well as antifouling performance of the membrane. This study enriched the research for preparing separation membranes by polymer/non-solvent co-induced phase separation and provided a practical and theoretical reference for controlling the membrane structure and properties by changing the coagulation bath temperature.
Funding source: Natural Science Foundation of Tianjin
Award Identifier / Grant number: 18JCZDJC37000
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are grateful for financial support from the Natural Science Foundation of Tianjin (grant number: 18JCZDJC37000).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Fu, S. D., Xu, Y. L., Wang, H. B., Sun, F. X., He, J. R., Liu, Z. G., Xu, Z. G., Wang, H. X., Lin, T. Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation. J. Polym. Eng. 2021, 41, 681–689; https://doi.org/10.1515/polyeng-2021-0111.Search in Google Scholar
2. Lu, Q. C., Li, N. N., Li, J. L. Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater. J. Polym. Eng. 2020, 40, 158–172; https://doi.org/10.1515/polyeng-2019-0253.Search in Google Scholar
3. Zhang, Y. Q., Guo, J., Han, G., Bai, Y. P., Ge, Q. C., Ma, J., Lau, C. H., Shao, L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 2021, 7; https://doi.org/10.1126/sciadv.abe8706.Search in Google Scholar PubMed PubMed Central
4. Nasir, N. A. A., Alshaghdari, A. G. A., Junaidi, M. U. M., Hashim, N. A., Rabuni, M. F., Rohani, R. Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation. J. Polym. Eng. 2021, 41, 607–614; https://doi.org/10.1515/polyeng-2020-0316.Search in Google Scholar
5. Abdelhamid, A. E., El-Sayed, A. A., Khalil, A. M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841; https://doi.org/10.1515/polyeng-2020-0141.Search in Google Scholar
6. Deng, W., Li, Y. Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method. Sep. Purif. Technol. 2021, 254; https://doi.org/10.1016/j.seppur.2020.117656.Search in Google Scholar
7. Wu, W., Zhang, X., Qin, L., Li, X., Meng, Q., Shen, C., Zhang, G. L. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation. Chem. Eng. J. 2020, 379; https://doi.org/10.1016/j.cej.2019.122368.Search in Google Scholar
8. Saxena, P., Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrd. Mater. 2021, 4, 8–26; https://doi.org/10.1007/s42114-021-00217-0.Search in Google Scholar
9. Jhaveri, J. H., Murthy, Z. V. P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379; https://doi.org/10.1016/j.desal.2015.11.009.Search in Google Scholar
10. Chen, F. T., Shi, X. X., Chen, X. B., Chen, W. X. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane. Appl. Surf. Sci. 2018, 427, 787–797; https://doi.org/10.1016/j.apsusc.2017.08.096.Search in Google Scholar
11. Kaveh, A., Azar, A. A. Effect of functionalized graphene oxide nanosheets on the morphologies and antifouling properties of polyamide composite membranes. J. Vinyl Addit. Technol. 2017, 23; https://doi.org/10.1002/vnl.21538.Search in Google Scholar
12. Zhao, Y. Y., Zhang, Y. Q., Li, F. R., Bai, Y. P., Pan, Y. L., Ma, J., Zhang, S., Shao, L. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment. J. Membr. Sci., 2021, 627.10.1016/j.memsci.2021.119234Search in Google Scholar
13. Zhao, G. L., Chen, W. N. Enhanced PVDF membrane performance via surface modification by functional polymer poly(N-isopropylacrylamide) to control protein adsorption and bacterial adhesion. React. Funct. Polym. 2015, 97, 19–29; https://doi.org/10.1016/j.reactfunctpolym.2015.10.001.Search in Google Scholar
14. Hu, J. L., Zhu, X. R., Xie, D. Q., Peng, X. Y., Zhu, M., Cheng, F. X., Shen, X. Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers. J. Polym. Eng. 2021, 41, 695–704; https://doi.org/10.1515/polyeng-2021-0112.Search in Google Scholar
15. Yu, L. Y., Xu, Z. L., Shen, H. M., Yang, H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Membr. Sci. 2009, 337, 257–265; https://doi.org/10.1016/j.memsci.2009.03.054.Search in Google Scholar
16. Shi, L., Wang, R., Cao, Y. M., Liang, D. T., Tay, J. H. Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 2008, 315, 195–204; https://doi.org/10.1016/j.memsci.2008.02.035.Search in Google Scholar
17. Rahimi, Z., Zinatizadeh, A. A., Zinadini, S. Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe3O4/PVDF ultrafiltration membrane. J. Ind. Eng. Chem. 2016, 38, 103–112; https://doi.org/10.1016/j.jiec.2016.04.011.Search in Google Scholar
18. Razmgar, K., Saljoughi, E., Mousavi, S. M. Preparation and characterization of a novel hydrophilic PVDF/PVA/Al2O3 nanocomposite membrane for removal of As(V) from aqueous solutions. Polym. Compos. 2019, 40, 2452–2461; https://doi.org/10.1002/pc.25115.Search in Google Scholar
19. Mousavi, S. M., Saljoughi, E., Ghasemipour, Z., Hosseini, S. A. Preparation and characterization of modified polysulfone membranes with high hydrophilic property using variation in coagulation bath temperature and addition of surfactant. Polym. Eng. Sci. 2012, 52, 2196–2205; https://doi.org/10.1002/pen.23179.Search in Google Scholar
20. Tang, Y. L., Sun, J., Li, S. F., Ran, Z. L., Xiang, Y. X. Effect of ethanol in the coagulation bath on the structure and performance of PVDF-g-PEGMA/PVDF membrane. J. Appl. Polym. Sci. 2019, 136; https://doi.org/10.1002/app.47380.Search in Google Scholar
21. Sui, Y., Wang, Z. N., Gao, C. J., Wan, Q., Zhu, L. P. An investigation on the antifouling ability of PVDF membranes by polyDOPA coating. Desalination Water Treat. 2012, 50, 22–33; https://doi.org/10.1080/19443994.2012.708239.Search in Google Scholar
22. Zhao, X. Z., Xuan, H. X., Chen, Y. L., He, C. J. Preparation and characterization of superior antifouling PVDF membrane with extremely ordered and hydrophilic surface layer. J. Membr. Sci. 2015, 494, 48–56; https://doi.org/10.1016/j.memsci.2015.07.052.Search in Google Scholar
23. Wang, Y., Chen, G. E., Wu, H. L., Xu, Z. L., Wan, J. J., Liu, L. J., Xu, S. J., Kong, Y. F., Wu, Q., Min, J., Mao, H. F. Fabrication of GO-Ag/PVDF/F127 modified membrane IPA coagulation bath for catalytic reduction of 4-nitrophenol. Sep. Purif. Technol. 2020, 235; https://doi.org/10.1016/j.seppur.2019.116143.Search in Google Scholar
24. Zhang, Y., Ye, L., Zhang, B. P., Chen, Y. S., Zhao, W. G., Yang, G., Wang, J., Zhang, H. W. Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: relationship between membrane polymorphous structure and organic fouling. J. Membr. Sci. 2019, 579, 22–32; https://doi.org/10.1016/j.memsci.2019.02.054.Search in Google Scholar
25. Li, Z., Wang, Q., Chen, X., Lai, S. Y., Feng, X., Zhao, Y. P., Chen, L. The role of coagulation in the temperature-sensitive PVDF-g-PNIPAAm membrane properties. Desalination Water Treat. 2016, 57, 16770–16778.10.1080/19443994.2015.1084482Search in Google Scholar
26. Long, M., Yang, C., You, X., Zhang, R., Yuan, J., Guan, J., Zhang, S., Wu, H., Khan, N. A., Kasher, R., Jiang, Z. Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. J. Membr. Sci. 2021, 638, 119689; https://doi.org/10.1016/j.memsci.2021.119689.Search in Google Scholar
27. Sheng-Yao, W., Li-Feng, F., Ryosuke, T., Hideto, M. Development of membranes with well-dispersed polyampholytic copolymer via a composite coagulation process. J. Membr. Sci., 2021, 620.10.1016/j.memsci.2020.118848Search in Google Scholar
28. Lu, Q., Li, N. Preparation of hydrophilic polyvinylidene fluoride/polyvinyl alcohol ultrafiltration membrane via polymer/non-solvent co-induced phase separation method towards enhance anti-fouling performance. J. Environ. Chem. Eng. 2021, 9, 106431; https://doi.org/10.1016/j.jece.2021.106431.Search in Google Scholar
29. Zhang, H., Lu, X. L., Liu, Z. Y., Ma, Z., Wu, S., Li, Z. D., Kong, X., Liu, J. J., Wu, C. R. The unidirectional regulatory role of coagulation bath temperature on cross-section radius of the PVDF hollow-fiber membrane. J. Membr. Sci. 2018, 550, 9–17; https://doi.org/10.1016/j.memsci.2017.12.059.Search in Google Scholar
30. Wang, X. Y., Zhang, L., Sun, D. H., An, Q. F., Chen, H. L. Effect of coagulation bath temperature on formation mechanism of poly(vinylidene fluoride) membrane. J. Appl. Polym. Sci. 2008, 110, 1656–1663; https://doi.org/10.1002/app.28169.Search in Google Scholar
31. Yeow, M. L., Liu, Y. T., Li, K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789; https://doi.org/10.1002/app.20141.Search in Google Scholar
32. Cardoso, V. F., Botelho, G., Lanceros-Mendez, S. Nonsolvent induced phase separation preparation of poly(vinylidene fluoride-co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties. Mater. Des. 2015, 88, 390–397; https://doi.org/10.1016/j.matdes.2015.09.018.Search in Google Scholar
33. Cheng, L. P. Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems. Macromolecules 1999, 32, 6668–6674; https://doi.org/10.1021/ma990418l.Search in Google Scholar
34. Ngang, H. P., Ahmad, A. L., Low, S. C., Ooi, B. S. Preparation of thermoresponsive PVDF/SiO2-PNIPAM mixed matrix membrane for saline oil emulsion separation and its cleaning efficiency. Desalination 2017, 408, 1–12; https://doi.org/10.1016/j.desal.2017.01.005.Search in Google Scholar
35. Haponska, M., Trojanowska, A., Nogalska, A., Jastrzab, R., Gumi, T., Tylkowski, B. PVDF membrane morphology-influence of polymer molecular weight and preparation temperature. Polymers 2017, 9; https://doi.org/10.3390/polym9120718.Search in Google Scholar
36. Cai, J. J., Zhou, S. Y., Zhao, Y. J., Xue, A. L., Zhang, Y., Li, M. S., Xing, W. H. Enhanced hydrophilicity of a thermo-responsive PVDF/palygorskite-g-PNIPAAM hybrid ultrafiltration membrane via surface segregation induced by temperature. RSC Adv. 2016, 6, 62186–62192; https://doi.org/10.1039/c6ra12807f.Search in Google Scholar
37. Li, N. N., Xiao, C. F. Effect of the preparation conditions on the permeation of ultrahigh-molecular-weight polyethylene/silicon dioxide hybrid membranes. J. Appl. Polym. Sci. 2010, 117, 2817–2824; https://doi.org/10.1002/app.32073.Search in Google Scholar
38. Boom, R. M., Boomgaard, Th., Berg, J. W. A., Smolders, C. A. Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 1993, 34; https://doi.org/10.1016/0032-3861(93)90819-v.Search in Google Scholar
39. Bakeri, G., Ismail, A. F., Rahimnejad, M., Matsuura, T. Analysis of polyetherimide/N-methyl-2-pyrrolidone/nonsolvent phase separation behavior. J. Polym. Res. 2014, 21; https://doi.org/10.1007/s10965-014-0386-7.Search in Google Scholar
40. Miyabe, K., Isogai, R. Estimation of molecular diffusivity in liquid phase systems by the Wilke–Chang equation. J. Chromatogr., A 2011, 1218; https://doi.org/10.1016/j.chroma.2011.07.018.Search in Google Scholar PubMed
41. Panda, S. R., De, S. Preparation, characterization and antifouling properties of polyacrylonitrile/polyurethane blend membranes for water purification. RSC Adv. 2015, 5, 23599–23612; https://doi.org/10.1039/c5ra00736d.Search in Google Scholar
42. Holda, A. K., Aernouts, B., Saeys, W., Vankelecom, I. F. J. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Membr. Sci. 2013, 442, 196–205.43.10.1016/j.memsci.2013.04.017Search in Google Scholar
43. Li, H. B., Shi, W. Y., Zhang, Y. F., Liu, D. Q., Liu, X. F. Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane. Polymers 2014, 6, 1846–1861; https://doi.org/10.3390/polym6061846.Search in Google Scholar
44. Mohsenpour, S., Esmaeilzadeh, F., Safekordi, A., Tavakolmoghadam, M., Rekabdar, F., Hemmati, M. The role of thermodynamic parameter on membrane morphology based on phase diagram. J. Mol. Liq. 2016, 224, 776–785; https://doi.org/10.1016/j.molliq.2016.10.042.Search in Google Scholar
45. Buonomenna, M. G., Macchi, P., Davoli, M., Drioli, E. Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur. Polym. J. 2007, 43, 1557–1572; https://doi.org/10.1016/j.eurpolymj.2006.12.033.Search in Google Scholar
46. Amirilargani, M., Saljoughi, E., Mohammadi, T., Moghbeli, M. R. Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes. Polym. Eng. Sci. 2010, 50, 885–893; https://doi.org/10.1002/pen.21603.Search in Google Scholar
47. Young, T. H., Cheng, L. P., Lin, D. J., Fane, L., Chuang, W. Y. Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 1999, 40, 5315–5323; https://doi.org/10.1016/s0032-3861(98)00747-2.Search in Google Scholar
48. Cui, Z. Y., Du, C. H., Xu, Y. Y., Ji, G. L., Zhu, B. K. Preparation of porous PVdF membrane via thermally induced phase separation using sulfolane. J. Appl. Polym. Sci. 2008, 108, 272–280; https://doi.org/10.1002/app.27494.Search in Google Scholar
49. Peng, J. M., Su, Y. L., Chen, W. J., Shi, Q., Jiang, Z. Y. Effects of coagulation bath temperature on the separation performance and antifouling property of poly(ether sulfone) ultrafiltration membranes. Ind. Eng. Chem. Res. 2010, 49, 4858–4864; https://doi.org/10.1021/ie9018963.Search in Google Scholar
50. Xie, M. M., Huan, G. L., Xia, W. W., Feng, X., Chen, L., Zhao, Y. P. Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin. J. Polym. Eng. 2018, 38, 179–186; https://doi.org/10.1515/polyeng-2016-0372.Search in Google Scholar
51. Zhang, J. G., Xu, Z. W., Mai, W., Min, C. Y., Zhou, B. M., Shan, M. J., Li, Y. L., Yang, C. Y., Wang, Z., Qian, X. M. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J. Mater. Chem. A. 2013, 1, 3101–3111; https://doi.org/10.1039/c2ta01415g.Search in Google Scholar
52. Wu, L. S., Sun, J. F., He, C. J. Effects of solvent sort, PES and PVP concentration on the properties and morphology of PVDF/PES blend hollow fiber membranes. J. Appl. Polym. Sci. 2010, 116, 1566–1573; https://doi.org/10.1002/app.31573.Search in Google Scholar
53. Zheng, Z. S., Li, B. B., Duan, S. Y., Sun, D., Peng, C. K. Preparation of PVDF ultrafiltration membranes using PVA as pore surface hydrophilic modification agent with improved antifouling performance. Polym. Eng. Sci. 2019, 59, 384–393; https://doi.org/10.1002/pen.24996.Search in Google Scholar
54. Ferreira, C. G., Cardoso, V. F., Lopes, A. C., Botelho, G., Lanceros-Mendez, S. Tailoring microstructure and physical properties of poly(vinylidene fluoride-hexafluoropropylene) porous films. J. Mater. Sci. 2015, 50, 5047–5058; https://doi.org/10.1007/s10853-015-9054-5.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Morphology, thermal and mechanical properties of electrospun polyvinylidene/polyethylene glycol composite nanofibers as form-stabilized phase change materials
- Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives
- Characterization of polypropylene/magnesium oxide/vapor-grown carbon fiber composites prepared by melt compounding
- Preparation and Assembly
- Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends
- Preparation of hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membranes by polymer/non-solvent co-induced phase separation: effect of coagulation bath temperature
- Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers
- Engineering and Processing
- A review on 3D printing in tissue engineering applications
- Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions
Articles in the same Issue
- Frontmatter
- Material Properties
- Morphology, thermal and mechanical properties of electrospun polyvinylidene/polyethylene glycol composite nanofibers as form-stabilized phase change materials
- Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives
- Characterization of polypropylene/magnesium oxide/vapor-grown carbon fiber composites prepared by melt compounding
- Preparation and Assembly
- Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends
- Preparation of hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membranes by polymer/non-solvent co-induced phase separation: effect of coagulation bath temperature
- Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers
- Engineering and Processing
- A review on 3D printing in tissue engineering applications
- Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions