Home Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends
Article
Licensed
Unlicensed Requires Authentication

Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends

  • Mateus Garcia Rodolfo , Lidiane Cristina Costa and Juliano Marini ORCID logo EMAIL logo
Published/Copyright: January 4, 2022
Become an author with De Gruyter Brill

Abstract

Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.


Corresponding author: Juliano Marini, Department of Materials Engineering, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, Brazil, E-mail:

Funding source: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Award Identifier / Grant number: 2017/06909-1

Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Award Identifier / Grant number: 427639/2016-6

Acknowledgments

The authors thank FAPESP and CNPq for the financial aid, Scandiflex do Brasil S.A. for the TPU donation and Pedro H. S. Vieira and Jéssica M. O. Silva for the assistance during the processing of the samples.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by The São Paulo Research Foundation, FAPESP (Process 2017/06909-1) and National Council for Scientific and Technological Development, CNPq (Process 427639/2016-6).

  3. Conflict of interest statement: The authors declare that there are no conflicts of interest regarding this article.

References

1. Raquez, J. M., Habibi, Y., Murariu, M., Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542.10.1016/j.progpolymsci.2013.05.014Search in Google Scholar

2. Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.10.1023/A:1020200822435Search in Google Scholar

3. Lim, L. T., Auras, R., Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.10.1016/j.progpolymsci.2008.05.004Search in Google Scholar

4. Goswami, J., Bhatnagar, N., Mohanty, S., Ghosh, A. K. Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. Express Polym. Lett. 2013, 7, 767–777.10.3144/expresspolymlett.2013.74Search in Google Scholar

5. Krishnan, S., Pandey, P., Mohanty, S., Nayak, S. K. Toughening of polylactic acid: an overview of research progress. Polymer Plast. Tech. Eng. 2016, 55, 1623–1652.10.1080/03602559.2015.1098698Search in Google Scholar

6. Oliaei, E., Kaffashi, B., Davoodi, S. Investigation of structure and mechanical properties of toughened poly(L-lactide)/thermoplastic poly(ester urethane) blends. J. Appl. Polym. Sci. 2016, 133, 43104.10.1002/app.43104Search in Google Scholar

7. Rashmi, B. J., Prashantha, K., Lacrampe, M-F., Krawczak, P. Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym. Lett. 2015, 9, 721–735.10.1063/1.4942284Search in Google Scholar

8. Santos, L. G., Costa, L. C., Pessan, L. A. Development of biodegradable PLA/PBT blends. J. Appl. Polym. Sci. 2018, 135, 45951.10.1002/app.45951Search in Google Scholar

9. Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., Yunos, K. F. M. Toughening poly(lactic acid) and aiding the melt-compounding with bio-sourced plasticizers. Agric. Agric. Sci. Procedia 2014, 2, 289–295.10.1016/j.aaspro.2014.11.041Search in Google Scholar

10. Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., Li, X. An environmentally sustainable plasticizer toughened polylactide. RSC Adv. 2018, 8, 11643–11651.10.1039/C7RA13448GSearch in Google Scholar

11. Bulota, M., Hughes, M. Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. J. Mater. Sci. 2012, 47, 5517–5523.10.1007/s10853-012-6443-xSearch in Google Scholar

12. Zhao, Q., Ding, Y., Yang, B., Ning, N., Fu, Q. Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid) (PLA). Polym. Test. 2013, 32, 299–305.10.1016/j.polymertesting.2012.11.012Search in Google Scholar

13. Jiang, J., Su, L., Zhang, K., Wu, G. Rubber-toughened PLA blends with low thermal expansion. J. Appl. Polym. Sci. 2013, 128, 3993–4000.10.1002/app.38642Search in Google Scholar

14. Kang, H., Qiao, B., Wang, R., Wang, Z., Zhang, L., Ma, J., Coates, P. Employing a novel bioelastomer to toughen polylactide. Polymer 2013, 54, 2450–2458.10.1016/j.polymer.2013.02.053Search in Google Scholar

15. Collyer, A. A. Rubber Toughened Engineering Plastics; Chapman & Hall: London, 1994.10.1007/978-94-011-1260-4Search in Google Scholar

16. Anderson, K. S., Hillmyer, M. A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 2004, 45, 8809–8823.10.1016/j.polymer.2004.10.047Search in Google Scholar

17. Ishida, S., Nagasaki, R., Chino, K., Dong, T., Inoue, Y. Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 2009, 113, 558–566.10.1002/app.30134Search in Google Scholar

18. Jaso, V., Cvetinov, M., Rakic, S., Petrovic, Z. S. Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. J. Appl. Polym. Sci. 2014, 131, 41104.10.1002/app.41104Search in Google Scholar

19. Vilar, W. D. Química e tecnologia dos poliuretanos; Vilar Consultoria: Rio de Janeiro, 1998.Search in Google Scholar

20. Rieger, B., Kunkel, A., Coates, G. W., Reichardt, R., Dinjus, E., Zevaco, T. A. Synthetic Biodegradable Polymers; Springer: Berlin, 2012.10.1007/978-3-642-27154-0Search in Google Scholar

21. Jing, X., Mi, H-Y., Peng, X-F., Turng, L-S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym. Eng. Sci. 2015, 55, 70–80.10.1002/pen.23873Search in Google Scholar

22. Mi, H.-Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X.-F., Turng, L.-S. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. C 2013, 33, 4767–4776.10.1016/j.msec.2013.07.037Search in Google Scholar PubMed PubMed Central

23. Hong, H., Yang, L., Yuan, Y., Qu, X., Chen, F., Wei, J., Liu, C. Preparation, rheological properties and primary cytocompatibility of TPU/PLA blends as biomedical materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 211–218.10.1007/s11595-016-1354-3Search in Google Scholar

24. Dogan, S. K., Boyacioglu, S., Kodal, M., Gokce, O., Ozkoc, G. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: effects of compatibilization. J. Mech. Behav. Biomed. Mater. 2017, 71, 349–361.10.1016/j.jmbbm.2017.04.001Search in Google Scholar PubMed

25. Lai, S.-M., Wu, W.-L., Wang, Y.-J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J. Polym. Res. 2016, 23, 99.10.1007/s10965-016-0993-6Search in Google Scholar

26. Dogan, S. K., Reyes, E. A., Rastogi, S., Ozkoc, G. Reactive compatibilization of PLA/TPU blends with a diisocyanate. J. Appl. Polym. Sci. 2014, 131, 40251.10.1002/app.40251Search in Google Scholar

27. Lai, S.-M., Lan, Y.-C., Wu, W.-L., Wang, Y.-J. Compatibility improvement of poly(lactic acid)/thermoplastic polyurethane blends with 3-aminopropyl triethoxysilane. J. Appl. Polym. Sci. 2015, 132, 42322.10.1002/app.42322Search in Google Scholar

28. Mahmud, M. S., Buys, Y. F., Anuar, H., Sopyan, I. Miscibility, morphology and mechanical properties of compatibilized polylactic acid/thermoplastic polyurethane blends. Mater. Today Proc. 2019, 17, 778–786.10.1016/j.matpr.2019.06.362Search in Google Scholar

29. Pandey, K., Antil, R., Saha, S., Jacob, J., Balavairavan, B. Poly(lactic acid)/thermoplastic polyurethane/wood flour composites: evaluation of morphology, thermal, mechanical and biodegradation properties. Mater. Res. Express 2019, 6, 125306.10.1088/2053-1591/ab5398Search in Google Scholar

30. Bernardes, G. P., Luiz, N. R., Santana, R. M. C., Forte, M. M. C. Influence of the morphology and viscoelasticity on the thermomechanical properties of poly(lactic acid)/thermoplastic polyurethane blends compatibilized with ethylene-ester copolymer. J. Appl. Polym. Sci. 2020, 137, 48926.10.1002/app.48926Search in Google Scholar

31. Zhou, Y., Luo, L., Liu, W., Zeng, G., Chen, Y. Preparation and characteristic of PC/PLA/TPU blends by reactive extrusion. Adv. Mater. Sci. Eng. 2015, 2015, 393582.10.1155/2015/393582Search in Google Scholar

32. Harris, A. M., Lee, E. C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255.10.1002/app.27261Search in Google Scholar

33. Backes, E. H., Pires, L. N., Costa, L. C., Passador, F. R., Pessan, L. A. Analysis of the degradation during melt processing of PLA/biosilicate composites. J. Compos. Sci. 2019, 3, 52.10.3390/jcs3020052Search in Google Scholar

34. Di Lorenzo, M. L., Androsch, R. Synthesis, Structure and Properties of Poly(lactic acid); Springer International Publishing: Basel, 2018.10.1007/978-3-319-64230-7Search in Google Scholar

35. Saeidlou, S., Huneault, M. A., Li, H., Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.10.1016/j.progpolymsci.2012.07.005Search in Google Scholar

36. Tsuji, H., Ikada, Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996, 197, 3483–3499.10.1002/macp.1996.021971033Search in Google Scholar

37. Androsch, R., Di Lorenzo, M. L., Schick, C. Crystal nucleation in random L/D-lactide copolymers. Eur. Polym. J. 2016, 75, 474–485.10.1016/j.eurpolymj.2016.01.020Search in Google Scholar

38. Feng, F., Ye, L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J. Appl. Polym. Sci. 2011, 119, 2778–2783.10.1002/app.32863Search in Google Scholar

39. Zhao, X., Hu, H., Wang, X., Yu, X., Zhou, W., Peng, S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020, 10, 13316.10.1039/D0RA01801ESearch in Google Scholar

40. Harrats, C., Thomas, S., Groeninckx, G. Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces; CRC Press: Boca Raton, 2006.10.1201/9781420026542Search in Google Scholar

41. Solarski, S., Ferreira, M., Devaux, E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 2005, 46, 11187–11192.10.1016/j.polymer.2005.10.027Search in Google Scholar

42. Zhang, J., Tashiro, K., Hideto, T., Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357.10.1021/ma0706071Search in Google Scholar

43. Pan, P., Zhu, B., Kai, W., Dong, T., Inoue, Y. Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296–4304.10.1021/ma800343gSearch in Google Scholar

44. Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., Hillmyer, M. A. Reactive compatibilization of polylactide/polypropylene blends. Ind. Eng. Chem. Res. 2015, 54, 6108–6114.10.1021/acs.iecr.5b00882Search in Google Scholar

45. Liu, H., Song, W., Chen, F., Guo, L., Zhang, J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44, 1513–1522.10.1021/ma1026934Search in Google Scholar

46. Han, J.-J., Huang, H.-X. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J. Appl. Polym. Sci. 2011, 120, 3217–3223.10.1002/app.33338Search in Google Scholar

Received: 2021-09-06
Accepted: 2021-11-04
Published Online: 2022-01-04
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0262/html
Scroll to top button