Abstract
Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.
Funding source: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Award Identifier / Grant number: 2017/06909-1
Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Award Identifier / Grant number: 427639/2016-6
Acknowledgments
The authors thank FAPESP and CNPq for the financial aid, Scandiflex do Brasil S.A. for the TPU donation and Pedro H. S. Vieira and Jéssica M. O. Silva for the assistance during the processing of the samples.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by The São Paulo Research Foundation, FAPESP (Process 2017/06909-1) and National Council for Scientific and Technological Development, CNPq (Process 427639/2016-6).
-
Conflict of interest statement: The authors declare that there are no conflicts of interest regarding this article.
References
1. Raquez, J. M., Habibi, Y., Murariu, M., Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542.10.1016/j.progpolymsci.2013.05.014Suche in Google Scholar
2. Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.10.1023/A:1020200822435Suche in Google Scholar
3. Lim, L. T., Auras, R., Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.10.1016/j.progpolymsci.2008.05.004Suche in Google Scholar
4. Goswami, J., Bhatnagar, N., Mohanty, S., Ghosh, A. K. Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. Express Polym. Lett. 2013, 7, 767–777.10.3144/expresspolymlett.2013.74Suche in Google Scholar
5. Krishnan, S., Pandey, P., Mohanty, S., Nayak, S. K. Toughening of polylactic acid: an overview of research progress. Polymer Plast. Tech. Eng. 2016, 55, 1623–1652.10.1080/03602559.2015.1098698Suche in Google Scholar
6. Oliaei, E., Kaffashi, B., Davoodi, S. Investigation of structure and mechanical properties of toughened poly(L-lactide)/thermoplastic poly(ester urethane) blends. J. Appl. Polym. Sci. 2016, 133, 43104.10.1002/app.43104Suche in Google Scholar
7. Rashmi, B. J., Prashantha, K., Lacrampe, M-F., Krawczak, P. Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym. Lett. 2015, 9, 721–735.10.1063/1.4942284Suche in Google Scholar
8. Santos, L. G., Costa, L. C., Pessan, L. A. Development of biodegradable PLA/PBT blends. J. Appl. Polym. Sci. 2018, 135, 45951.10.1002/app.45951Suche in Google Scholar
9. Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., Yunos, K. F. M. Toughening poly(lactic acid) and aiding the melt-compounding with bio-sourced plasticizers. Agric. Agric. Sci. Procedia 2014, 2, 289–295.10.1016/j.aaspro.2014.11.041Suche in Google Scholar
10. Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., Li, X. An environmentally sustainable plasticizer toughened polylactide. RSC Adv. 2018, 8, 11643–11651.10.1039/C7RA13448GSuche in Google Scholar
11. Bulota, M., Hughes, M. Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. J. Mater. Sci. 2012, 47, 5517–5523.10.1007/s10853-012-6443-xSuche in Google Scholar
12. Zhao, Q., Ding, Y., Yang, B., Ning, N., Fu, Q. Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid) (PLA). Polym. Test. 2013, 32, 299–305.10.1016/j.polymertesting.2012.11.012Suche in Google Scholar
13. Jiang, J., Su, L., Zhang, K., Wu, G. Rubber-toughened PLA blends with low thermal expansion. J. Appl. Polym. Sci. 2013, 128, 3993–4000.10.1002/app.38642Suche in Google Scholar
14. Kang, H., Qiao, B., Wang, R., Wang, Z., Zhang, L., Ma, J., Coates, P. Employing a novel bioelastomer to toughen polylactide. Polymer 2013, 54, 2450–2458.10.1016/j.polymer.2013.02.053Suche in Google Scholar
15. Collyer, A. A. Rubber Toughened Engineering Plastics; Chapman & Hall: London, 1994.10.1007/978-94-011-1260-4Suche in Google Scholar
16. Anderson, K. S., Hillmyer, M. A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 2004, 45, 8809–8823.10.1016/j.polymer.2004.10.047Suche in Google Scholar
17. Ishida, S., Nagasaki, R., Chino, K., Dong, T., Inoue, Y. Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 2009, 113, 558–566.10.1002/app.30134Suche in Google Scholar
18. Jaso, V., Cvetinov, M., Rakic, S., Petrovic, Z. S. Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. J. Appl. Polym. Sci. 2014, 131, 41104.10.1002/app.41104Suche in Google Scholar
19. Vilar, W. D. Química e tecnologia dos poliuretanos; Vilar Consultoria: Rio de Janeiro, 1998.Suche in Google Scholar
20. Rieger, B., Kunkel, A., Coates, G. W., Reichardt, R., Dinjus, E., Zevaco, T. A. Synthetic Biodegradable Polymers; Springer: Berlin, 2012.10.1007/978-3-642-27154-0Suche in Google Scholar
21. Jing, X., Mi, H-Y., Peng, X-F., Turng, L-S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym. Eng. Sci. 2015, 55, 70–80.10.1002/pen.23873Suche in Google Scholar
22. Mi, H.-Y., Salick, M. R., Jing, X., Jacques, B. R., Crone, W. C., Peng, X.-F., Turng, L.-S. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. C 2013, 33, 4767–4776.10.1016/j.msec.2013.07.037Suche in Google Scholar PubMed PubMed Central
23. Hong, H., Yang, L., Yuan, Y., Qu, X., Chen, F., Wei, J., Liu, C. Preparation, rheological properties and primary cytocompatibility of TPU/PLA blends as biomedical materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 211–218.10.1007/s11595-016-1354-3Suche in Google Scholar
24. Dogan, S. K., Boyacioglu, S., Kodal, M., Gokce, O., Ozkoc, G. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: effects of compatibilization. J. Mech. Behav. Biomed. Mater. 2017, 71, 349–361.10.1016/j.jmbbm.2017.04.001Suche in Google Scholar PubMed
25. Lai, S.-M., Wu, W.-L., Wang, Y.-J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J. Polym. Res. 2016, 23, 99.10.1007/s10965-016-0993-6Suche in Google Scholar
26. Dogan, S. K., Reyes, E. A., Rastogi, S., Ozkoc, G. Reactive compatibilization of PLA/TPU blends with a diisocyanate. J. Appl. Polym. Sci. 2014, 131, 40251.10.1002/app.40251Suche in Google Scholar
27. Lai, S.-M., Lan, Y.-C., Wu, W.-L., Wang, Y.-J. Compatibility improvement of poly(lactic acid)/thermoplastic polyurethane blends with 3-aminopropyl triethoxysilane. J. Appl. Polym. Sci. 2015, 132, 42322.10.1002/app.42322Suche in Google Scholar
28. Mahmud, M. S., Buys, Y. F., Anuar, H., Sopyan, I. Miscibility, morphology and mechanical properties of compatibilized polylactic acid/thermoplastic polyurethane blends. Mater. Today Proc. 2019, 17, 778–786.10.1016/j.matpr.2019.06.362Suche in Google Scholar
29. Pandey, K., Antil, R., Saha, S., Jacob, J., Balavairavan, B. Poly(lactic acid)/thermoplastic polyurethane/wood flour composites: evaluation of morphology, thermal, mechanical and biodegradation properties. Mater. Res. Express 2019, 6, 125306.10.1088/2053-1591/ab5398Suche in Google Scholar
30. Bernardes, G. P., Luiz, N. R., Santana, R. M. C., Forte, M. M. C. Influence of the morphology and viscoelasticity on the thermomechanical properties of poly(lactic acid)/thermoplastic polyurethane blends compatibilized with ethylene-ester copolymer. J. Appl. Polym. Sci. 2020, 137, 48926.10.1002/app.48926Suche in Google Scholar
31. Zhou, Y., Luo, L., Liu, W., Zeng, G., Chen, Y. Preparation and characteristic of PC/PLA/TPU blends by reactive extrusion. Adv. Mater. Sci. Eng. 2015, 2015, 393582.10.1155/2015/393582Suche in Google Scholar
32. Harris, A. M., Lee, E. C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255.10.1002/app.27261Suche in Google Scholar
33. Backes, E. H., Pires, L. N., Costa, L. C., Passador, F. R., Pessan, L. A. Analysis of the degradation during melt processing of PLA/biosilicate composites. J. Compos. Sci. 2019, 3, 52.10.3390/jcs3020052Suche in Google Scholar
34. Di Lorenzo, M. L., Androsch, R. Synthesis, Structure and Properties of Poly(lactic acid); Springer International Publishing: Basel, 2018.10.1007/978-3-319-64230-7Suche in Google Scholar
35. Saeidlou, S., Huneault, M. A., Li, H., Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.10.1016/j.progpolymsci.2012.07.005Suche in Google Scholar
36. Tsuji, H., Ikada, Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996, 197, 3483–3499.10.1002/macp.1996.021971033Suche in Google Scholar
37. Androsch, R., Di Lorenzo, M. L., Schick, C. Crystal nucleation in random L/D-lactide copolymers. Eur. Polym. J. 2016, 75, 474–485.10.1016/j.eurpolymj.2016.01.020Suche in Google Scholar
38. Feng, F., Ye, L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J. Appl. Polym. Sci. 2011, 119, 2778–2783.10.1002/app.32863Suche in Google Scholar
39. Zhao, X., Hu, H., Wang, X., Yu, X., Zhou, W., Peng, S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020, 10, 13316.10.1039/D0RA01801ESuche in Google Scholar
40. Harrats, C., Thomas, S., Groeninckx, G. Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces; CRC Press: Boca Raton, 2006.10.1201/9781420026542Suche in Google Scholar
41. Solarski, S., Ferreira, M., Devaux, E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 2005, 46, 11187–11192.10.1016/j.polymer.2005.10.027Suche in Google Scholar
42. Zhang, J., Tashiro, K., Hideto, T., Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357.10.1021/ma0706071Suche in Google Scholar
43. Pan, P., Zhu, B., Kai, W., Dong, T., Inoue, Y. Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296–4304.10.1021/ma800343gSuche in Google Scholar
44. Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., Hillmyer, M. A. Reactive compatibilization of polylactide/polypropylene blends. Ind. Eng. Chem. Res. 2015, 54, 6108–6114.10.1021/acs.iecr.5b00882Suche in Google Scholar
45. Liu, H., Song, W., Chen, F., Guo, L., Zhang, J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44, 1513–1522.10.1021/ma1026934Suche in Google Scholar
46. Han, J.-J., Huang, H.-X. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J. Appl. Polym. Sci. 2011, 120, 3217–3223.10.1002/app.33338Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Morphology, thermal and mechanical properties of electrospun polyvinylidene/polyethylene glycol composite nanofibers as form-stabilized phase change materials
- Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives
- Characterization of polypropylene/magnesium oxide/vapor-grown carbon fiber composites prepared by melt compounding
- Preparation and Assembly
- Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends
- Preparation of hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membranes by polymer/non-solvent co-induced phase separation: effect of coagulation bath temperature
- Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers
- Engineering and Processing
- A review on 3D printing in tissue engineering applications
- Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Morphology, thermal and mechanical properties of electrospun polyvinylidene/polyethylene glycol composite nanofibers as form-stabilized phase change materials
- Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives
- Characterization of polypropylene/magnesium oxide/vapor-grown carbon fiber composites prepared by melt compounding
- Preparation and Assembly
- Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends
- Preparation of hydrophilic modified polyvinylidene fluoride (PVDF) ultrafiltration membranes by polymer/non-solvent co-induced phase separation: effect of coagulation bath temperature
- Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers
- Engineering and Processing
- A review on 3D printing in tissue engineering applications
- Application of radiation grafted waste polypropylene fabric for the effective removal of Cu (II) and Cr (III) ions