Startseite Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)

  • Yong-Chan Chung , Gyo Young Gu , Ji Eun Park und Byoung Chul Chun ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate) chains were grafted to polyurethane (PU) using the graft-polymerization method in order to enhance the water compatibility of PU. The grafted chains were ionized into cationic or anionic form depending on the addition of strong acid or base. The grafted polymer chains did not affect the melting, crystallization, and glass transition of the soft segment of PU due to the softness of the chain. The cross-link density and solution viscosity increased due to the linking between the grafted chains, but the slight cross-linking did not disturb the solvation of PU. The slight cross-linking notably enhanced the maximum tensile stress and shape recovery capability, and the water compatibility of PU could be notably enhanced by the grafted ionized chains. Overall, the grafting of ionized polymeric chains onto PU could enhance the hydrophilicity of PU surface, tensile strength, and shape recovery capability.


Corresponding author: Byoung Chul Chun, School of Nano Engineering, Inje University, Gimhae 50834, South Korea, E-mail:

Award Identifier / Grant number: NRF-2016R1D1A1B01014308

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01014308) is deeply appreciated.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., Jaafar, J. Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Separ. Purif. Technol. 2020, 233, 116007; https://doi.org/10.1016/j.seppur.2019.116007.Suche in Google Scholar

2. Zhang, H. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 2014, 55, 699–714; https://doi.org/10.1016/j.polymer.2013.12.064.Suche in Google Scholar

3. Bergmann, N. M., Peppas, N. A. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Prog. Polym. Sci. 2008, 33, 271–288; https://doi.org/10.1016/j.progpolymsci.2007.09.004.Suche in Google Scholar

4. Fréchet, J. M. J. Functional polymers: from plastic electronics to polymer-assisted therapeutics. Prog. Polym. Sci. 2005, 30, 844–857; https://doi.org/10.1016/j.progpolymsci.2005.06.005.Suche in Google Scholar

5. Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262; https://doi.org/10.1016/j.polymer.2006.01.084.Suche in Google Scholar

6. Deng, J., Wang, L., Liu, L., Yang, W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 2009, 34, 156–193; https://doi.org/10.1016/j.progpolymsci.2008.06.002.Suche in Google Scholar

7. Hasegawa, S., Takahashi, S., Iwase, H., Koizumi, S., Morishita, N., Sato, K., Narita, T., Ohnuma, M., Maekawa, Y. Radiation-induced graft polymerization of functional monomer into poly(ether ether ketone) film and structure-property analysis of the grafted membrane. Polymer 2011, 52, 98–106; https://doi.org/10.1016/j.polymer.2010.11.009.Suche in Google Scholar

8. Ang, M. B. M. Y., Huang, S. H., Chang, M. W., Lai, C. L., Tsai, H. A., Hung, W. S., Hu, C. C., Lee, K. R. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Separ. Purif. Technol. 2020, 235, 116155; https://doi.org/10.1016/j.seppur.2019.116155.Suche in Google Scholar

9. Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., Mänttäri, M. Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. J. Membr. Sci. 2004, 239, 55–64; https://doi.org/10.1016/j.memsci.2003.09.029.Suche in Google Scholar

10. Chittrakarn, T., Tirawanichakul, Y., Sirijarukul, S., Yuenyao, C. Plasma induced graft polymerization of hydrophilic monomers on polysulfone gas separation membrane surfaces. Surf. Coating. Technol. 2016, 296, 157–163; https://doi.org/10.1016/j.surfcoat.2016.04.018.Suche in Google Scholar

11. Steinmetz, H. P., Rudnick-Glick, S., Natan, M., Banin, E., Margel, S. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation. Colloids Surf., B 2016, 147, 300–306; https://doi.org/10.1016/j.colsurfb.2016.08.007.Suche in Google Scholar PubMed

12. Huang, C. Y., Lu, W. L., Feng, Y. C. Effect of plasma treatment on the AAc grafting percentage of high-density polyethylene. Surf. Coating. Technol. 2003, 167, 1–10; https://doi.org/10.1016/s0257-8972(02)00817-4.Suche in Google Scholar

13. Kim, S. R. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920; https://doi.org/10.1002/1097-4628(20000829)77:9<1913::aid-app7>3.0.co;2-#.10.1002/1097-4628(20000829)77:9<1913::AID-APP7>3.0.CO;2-#Suche in Google Scholar

14. Shiheng, Y., Li, R., Yingjun, W. Argon plasma-induced graft polymerization of PEGMA on chitosan membrane surface for cell adhesion improvement. Plasma Sci. Technol. 2013, 15, 1041–1046.10.1088/1009-0630/15/10/15Suche in Google Scholar

15. Yilgor, I., Yilgor, E., Wilkes, G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 2015, 58, A1–A36; https://doi.org/10.1016/j.polymer.2014.12.014.Suche in Google Scholar

16. Das, A., Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101; https://doi.org/10.1016/j.aiepr.2020.07.002.Suche in Google Scholar

17. Engels, H. W., Pirkl, H. G., Albers, R., Albach, R. W., Krause, J., Hoffmann, A., Casselmann, H., Dormish, J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441; https://doi.org/10.1002/anie.201302766.Suche in Google Scholar

18. Kucinska-Lipka, J., Gubanska, I., Strankowski, M., Cieśliński, H., Filipowicz, N., Janik, H. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration. Mater. Sci. Eng. C 2017, 75, 671–681; https://doi.org/10.1016/j.msec.2017.02.052.Suche in Google Scholar

19. Zia, K. M., Zuber, M., Barikani, M., Bhatti, I. A., Khan, M. B. Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf., B 2009, 72, 248–252; https://doi.org/10.1016/j.colsurfb.2009.04.011.Suche in Google Scholar

20. Kanagaraj, P., Mohamed, I. M. A., Huang, W., Liu, C. Membrane fouling mitigation for enhanced water flux and high separation of humic acid and copper ion using hydrophilic polyurethane modified cellulose acetate ultrafiltration membranes. React. Funct. Polym. 2020, 150, 104538; https://doi.org/10.1016/j.reactfunctpolym.2020.104538.Suche in Google Scholar

21. Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 2015, 6, 105–121; https://doi.org/10.1016/j.jare.2013.07.006.Suche in Google Scholar PubMed PubMed Central

22. Chen, Y., Wang, R., Wang, Y., Zhao, W., Sun, S., Zhao, C. Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. Int. J. Biol. Macromol. 2017, 98, 1–11; https://doi.org/10.1016/j.ijbiomac.2017.01.102.Suche in Google Scholar PubMed

23. Gennen, S., Grignard, B., Thomassin, J.-M., Gilbert, B., Vertruyen, B., Jerome, C., Detrembleur, C. Polyhydroxyurethane hydrogels: synthesis and characterizations. Eur. Polym. J. 2016, 84, 849–862; https://doi.org/10.1016/j.eurpolymj.2016.07.013.Suche in Google Scholar

24. Li, K., Zhou, C., Liu, S., Yao, F., Fu, G., Xu, L. Preparation of mechanically-tough and thermo-responsive polyurethane-poly(ethylene glycol) hydrogels. React. Funct. Polym. 2017, 117, 81–88; https://doi.org/10.1016/j.reactfunctpolym.2017.06.010.Suche in Google Scholar

25. Tan, K., Obendorf, S. K. Development of an antimicrobial microporous polyurethane membrane. J. Membr. Sci. 2007, 289, 199–209; https://doi.org/10.1016/j.memsci.2006.11.054.Suche in Google Scholar

26. Chunli, H., Miao, W., Xianmei, C., Xiaobo, H., Li, L., Haomiao, Z., Jian, S., Jiang, Y. Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility. Appl. Surf. Sci. 2011, 258, 755–760.10.1016/j.apsusc.2011.08.074Suche in Google Scholar

27. Bagheri, M., Pourmoazzen, Z. Synthesis and properties of new liquid crystalline polyurethanes containing inesogenic side chain. React. Funct. Polym. 2008, 68, 507–518; https://doi.org/10.1016/j.reactfunctpolym.2007.10.032.Suche in Google Scholar

28. Buruiana, E. C., Melinte, V., Buruiana, T., Lippert, T., Yoshikawa, H., Mashuhara, H. Synthesis and characterisation of new hard polyurethanes with triazene pendants. J. Photochem. Photobiol., A 2005, 171, 261–267; https://doi.org/10.1016/j.jphotochem.2004.11.001.Suche in Google Scholar

29. Chung, Y. C., Kim, H. Y., Choi, J. W., Chun, B. C. Graft polymerization of 4‐imidazole acrylic acid onto polyurethane for the improvement of water compatibility and antifungal activity. Polym. Eng. Sci. 2018, 58, 2088–2097; https://doi.org/10.1002/pen.24820.Suche in Google Scholar

30. Chung, Y. C., Bae, J. C., Choi, J. W., Chun, B. C. The preparation of hydrogel-like polyurethane using the graft polymerization of N,N-dimethylaminoethyl methacrylate and acrylic acid. Polym. Bull. 2019, 76, 6371–6386; https://doi.org/10.1007/s00289-019-02726-x.Suche in Google Scholar

31. Chung, Y. C., Kim, D. E., Choi, J. W., Chun, B. C. The effect of attached tetracycline and hydrophilic groups on the enhancement of antibacterial effectiveness and low temperature flexibility of polyurethane. Polym. Adv. Technol. 2019, 30, 1696–1708; https://doi.org/10.1002/pat.4600.Suche in Google Scholar

32. Chung, Y. C., Kim, H. Y., Choi, J. W., Chun, B. C. Modification of polyurethane by graft polymerization of poly(acrylic acid) for the control of molecular interaction and water compatibility. Polym. Bull. 2015, 72, 2685–2703; https://doi.org/10.1007/s00289-015-1429-x.Suche in Google Scholar

33. Sekkar, V., Gopalakrishnan, S., Ambika Devi, K. Studies on allophanate–urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur. Polym. J. 2013, 39, 1281–1290.10.1016/S0014-3057(02)00364-6Suche in Google Scholar

34. Petrovic, Z. S., Javni, I., Divjakovic, V. Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. J. Polym. Sci. B Polym. Phys. 1998, 36, 221–235; https://doi.org/10.1002/(sici)1099-0488(19980130)36:2<221::aid-polb3>3.0.co;2-u.10.1002/(SICI)1099-0488(19980130)36:2<221::AID-POLB3>3.0.CO;2-USuche in Google Scholar

35. Bankoti, K., Rameshbabu, A. P., Datta, S., Maity, P. P., Goswami, P., Datta, P., Ghosh, A., Mitra, S. K., Dhara, S. Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater. Sci. Eng. C 2017, 81, 133–143; https://doi.org/10.1016/j.msec.2017.07.018.Suche in Google Scholar

36. Chung, Y. C., Choi, J. W., Chung, H. M., Chun, B. C. The MDI-mediated lateral crosslinking of polyurethane copolymer and the impact on tensile properties and shape memory effect. Bull. Kor. Chem. Soc. 2012, 33, 692–694; https://doi.org/10.5012/bkcs.2012.33.2.692.Suche in Google Scholar

37. Choi, T., Weksler, J., Padsalgikar, A., Runt, J. Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 2010, 51, 4375–4382; https://doi.org/10.1016/j.polymer.2010.07.030.Suche in Google Scholar

38. Russo, P., Lavorgna, M., Piscitelli, F., Acierno, D., Di Maio, L. Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur. Polym. J. 2013, 49, 379–388; https://doi.org/10.1016/j.eurpolymj.2012.11.008.Suche in Google Scholar

39. Chung, Y. C., Kim, S. H., Bae, J. C., Chun, B. C. Grafting of triphenylmethyl group onto polyurethane and the impact on the shape recovery and flexibility at extremely low temperature. Fibers Polym. 2018, 19, 1157–1165; https://doi.org/10.1007/s12221-018-8082-6.Suche in Google Scholar

40. Lin, C. H., Jao, W. C., Yeh, Y. H., Lin, W. C., Yang, M. C. Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS–polyurethane–HEMA hydrogel. Colloids Surf., B 2009, 70, 132–141; https://doi.org/10.1016/j.colsurfb.2008.12.020.Suche in Google Scholar

Received: 2021-03-30
Accepted: 2021-05-20
Published Online: 2021-06-14
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0107/pdf
Button zum nach oben scrollen