Home Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
Article
Licensed
Unlicensed Requires Authentication

Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers

  • Jianlong Hu , Xuanren Zhu , Deqiong Xie , Xianya Peng , Meng Zhu , Feixiang Cheng EMAIL logo and Xiang Shen ORCID logo EMAIL logo
Published/Copyright: July 22, 2021
Become an author with De Gruyter Brill

Abstract

In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree (GD) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.


Corresponding authors: Feixiang Cheng and Xiang Shen, College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China, E-mail: ,

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51703118

Funding source: Yunnan Local Colleges Research Projects of China

Award Identifier / Grant number: 2019FH001-006

Funding source: Yunnan Reserve Talents for Young and Middle-aged Leaders in Academic and Technical Fields

Award Identifier / Grant number: 2019HB059

Funding source: Innovation Training Program of Chinese College Students

Award Identifier / Grant number: 202010684019 and 202010684028

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is financed by the National Natural Science Foundation of China (grant no. 51703118), Yunnan Local Colleges Research Projects of China (grant no. 2019FH001-006), Yunnan Reserve Talents for Young and Middle-aged Leaders in Academic and Technical Fields (2019HB059) and Innovation Training Program of Chinese College Students (grant nos. 202010684019 and 202010684028). We also appreciate the financial support from Yunnan Top Young Talents of Ten Thousand Talents Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yang, L. B., Wang, Z., Zhang, J. L. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal. J. Membr. Sci. 2017, 532, 76–86; https://doi.org/10.1016/j.memsci.2017.03.014.Search in Google Scholar

2. Zhang, J. C., Liu, L. F., Si, Y., Yu, J. Y., Ding, B. Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 2020, 30, 2002192; https://doi.org/10.1002/adfm.202002192.Search in Google Scholar

3. Xie, M. M., Huan, G. L., Xia, W. W., Feng, X., Chen, L., Zhao, Y. P. Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin. J. Polym. Eng. 2018, 38, 179–186; https://doi.org/10.1515/polyeng-2016-0372.Search in Google Scholar

4. Wei, R., Guo, J. B., Jin, L. Q., He, C., Xie, Y., Zhang, X., Zhao, W. F., Zhao, C. S. Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes. J. Mater. Chem. A. 2020, 8, 8934–8948; https://doi.org/10.1039/d0ta02154g.Search in Google Scholar

5. Zhao, X. Z., Liu, C. K. Efficient preparation of a novel PVDF antifouling membrane based on the solvent-responsive cleaning properties. Separ. Purif. Technol. 2019, 210, 100–106; https://doi.org/10.1016/j.seppur.2018.07.088.Search in Google Scholar

6. Zhao, J. J., Yang, Y., Li, C., Hou, L. A. Fabrication of GO modified PVDF membrane for dissolved organic matter removal: removal mechanism and antifouling property. Separ. Purif. Technol. 2019, 209, 482–490; https://doi.org/10.1016/j.seppur.2018.07.050.Search in Google Scholar

7. Beril Melbiah, J. S., Kaleekkal, N. J., Nithya Rabekkal, D., Rana, D., Nagendran, A., Mohan, D. Improved permeation, separation and antifouling performance of customized polyacrylonitrile ultrafiltration membranes. Chem. Eng. Res. Des. 2020, 159, 157–169; https://doi.org/10.1016/j.cherd.2020.04.014.Search in Google Scholar

8. Li, H., Zhu, L., Zhu, X., Chao, M., Xue, J. W., Sun, D. F., Xia, F. J., Xue, Q. Z. Dual-functional membrane decorated with flower-like metal–organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. J. Hazard Mater. 2021, 408, 124444; https://doi.org/10.1016/j.jhazmat.2020.124444.Search in Google Scholar PubMed

9. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., Jaafar, J. Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Separ. Purif. Technol. 2020, 233, 116007; https://doi.org/10.1016/j.seppur.2019.116007.Search in Google Scholar

10. Zhang, L. Y., He, Y., Ma, L., Chen, J. Y., Fan, Y., Zhang, S. H., Shi, H., Li, Z. Y., Luo, P. Y. Hierarchically stabilized PAN/β-FeOOH nanofibrous membrane for efficient water purification with excellent antifouling performance and robust solvent resistance. ACS Appl. Mater. Interfaces 2019, 11, 34487−34496; https://doi.org/10.1021/acsami.9b12855.Search in Google Scholar PubMed

11. Tripathi, B. P., Dubey, N. C., Subair, R., Choudhury, S., Stamm, M. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Adv. 2016, 6, 4448–4457; https://doi.org/10.1039/c5ra22160a.Search in Google Scholar

12. Kang, S., Asatekin, A., Mayes, A. M., Elimelech, M. Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J. Membr. Sci. 2007, 296, 42–50; https://doi.org/10.1016/j.memsci.2007.03.012.Search in Google Scholar

13. Zhang, F., Gao, S. J., Zhu, Y. Z., Jin, J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for highefficient oil/water separation. J. Membr. Sci. 2016, 513, 67–73; https://doi.org/10.1016/j.memsci.2016.04.020.Search in Google Scholar

14. Jiang, L. Y., Yun, J. H., Wang, Y. X., Yang, H., Xu, Z., Xu, Z. L. High-flux, anti-fouling dendrimer grafted PAN membrane: fabrication, performance and mechanisms. J. Membr. Sci. 2020, 596, 117743; https://doi.org/10.1016/j.memsci.2019.117743.Search in Google Scholar

15. Liu, W., Cai, M. H., He, Y. G., Wang, S., Zheng, J. W., Xu, X. P. Development of antibacterial polyacrylonitrile membrane modified with a covalently immobilized lysozyme. RSC Adv. 2015, 5, 84432–84438; https://doi.org/10.1039/c5ra14867g.Search in Google Scholar

16. Dai, Z. W., Wan, L. S., Xu, Z. K. Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. J. Membr. Sci. 2008, 325, 479–485; https://doi.org/10.1016/j.memsci.2008.08.013.Search in Google Scholar

17. Wang, Z. G., Wan, L. S., Xu, Z. K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview. J. Membr. Sci. 2007, 304, 8–23; https://doi.org/10.1016/j.memsci.2007.05.012.Search in Google Scholar

18. Li, P., Wang, Z., Yang, L. B., Zhao, S., Song, P., Khan, B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J. Membr. Sci. 2018, 555, 56–68; https://doi.org/10.1016/j.memsci.2018.03.018.Search in Google Scholar

19. Liu, Y. F., Xu, C., Xie, B. B., Hu, W. H., Li, Y., Yao, C. PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property. J. Coating Technol. Res. 2018, 15, 403–414; https://doi.org/10.1007/s11998-017-9995-5.Search in Google Scholar

20. Ma, H. W., Hyun, J. H., Stiller, P., Chilkoti, A. “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 2004, 16, 338–341; https://doi.org/10.1002/adma.200305830.Search in Google Scholar

21. Abedi, M., Sadeghi, M., Chenar, M. P. Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J. Taiwan. Inst. Chem. E. 2015, 55, 42–48; https://doi.org/10.1016/j.jtice.2015.03.038.Search in Google Scholar

22. Shen, X., Liu, P., He, C. X., Xia, S. B., Liu, J. J., Cheng, F. X., Suo, H. B., Zhao, Y. P., Chen, L. Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Separ. Purif. Technol. 2021, 255, 117418; https://doi.org/10.1016/j.seppur.2020.117418.Search in Google Scholar

23. Huang, C. J., Chu, S. H., Wang, L. C., Li, C. H., Lee, T. R. Bioinspired zwitterionic surface coatings with robust photostability and fouling resistance. ACS Appl. Mater. Interfaces 2015, 7, 23776−23786; https://doi.org/10.1021/acsami.5b08418.Search in Google Scholar PubMed

24. Cheng, Y., Wang, J. L., Li, M. L., Fu, F. F., Zhao, Y., Yu, J. Zwitterionic polymer-grafted superhydrophilic and superoleophobic silk fabrics for anti-oil applications. Macromol. Rapid Commun. 2020, 41, 2000162; https://doi.org/10.1002/marc.202000162.Search in Google Scholar PubMed

25. Ge, J. L., Zong, D. D., Jin, Q., Yu, J. Y., Ding, B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Funct. Mater. 2018, 28, 1705051; https://doi.org/10.1002/adfm.201705051.Search in Google Scholar

26. Zang, L. L., Zhen, S. X., Wang, L. B., Ma, J., Sun, L. G. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. J. Membr. Sci. 2020, 612, 118379; https://doi.org/10.1016/j.memsci.2020.118379.Search in Google Scholar

27. Li, L. L., Xiang, Y. Y., Yang, W. F., Liu, Z. L., Cai, M. R., Ma, Z. F., Wei, Q. B., Pei, X. W., Yu, B., Zhou, F. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. J. Colloid Interface Sci. 2020, 575, 388–398; https://doi.org/10.1016/j.jcis.2020.04.117.Search in Google Scholar PubMed

28. Yin, J., Zhou, J. C., Novel Polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination. 2015, 365, 46−56; https://doi.org/10.1016/j.desal.2015.02.017.Search in Google Scholar

29. Hikita, S., Shintani, T., Nakagawa, K., Matsuyama, H., Yoshioka, T. Structure control of hydrophilized PVDF hollow-fiber membranes using amphiphilic copolymers: PMMA-co-P (HEMA-co-MEA). J. Membr. Sci. 2020, 612, 118421; https://doi.org/10.1016/j.memsci.2020.118421.Search in Google Scholar

30. Zhu, Y. D., Yu, X. F., Zhang, T. H., Wang, X. F. Constructing zwitterionic coatings on thin-film nanofibrous composite membrane substrate for multifunctionality. Appl. Surf. Sci. 2019, 483, 979–990; https://doi.org/10.1016/j.apsusc.2019.04.063.Search in Google Scholar

31. Shen, X., Zhao, Y. P., Chen, L. The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance. Biofouling, 2013, 29, 991−1003; https://doi.org/10.1080/08927014.2013.823484.Search in Google Scholar PubMed

32. Zhao, Y. F., Zhang, P. B., Sun, J., Liu, C. J., Yi, Z., Zhu, L. P., Xu, Y. Y. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. J. Colloid Interface Sci. 2015, 448, 380–388; https://doi.org/10.1016/j.jcis.2015.01.084.Search in Google Scholar PubMed

33. Li, M. Z., Li, J. H., Shao, X. S., Miao, J., Wang, J. B., Zhang, Q. Q., Xu, X. P. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. J. Membr. Sci. 2012, 405–406, 141–148; https://doi.org/10.1016/j.memsci.2012.02.062.Search in Google Scholar

34. Shen, X., Yin, X. B., Zhao, Y. P., Chen, L. Improved protein fouling resistance of PVDF membrane grafted with the polyampholyte layers. Colloid Polym. Sci. 2015, 293, 1205–1213; https://doi.org/10.1007/s00396-015-3510-2.Search in Google Scholar

35. Zhang, C. X., Yin, C. C., Wang, Y. J., Zhou, J. M., Wang, Y. Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes. J. Membr. Sci. 2020, 599, 117833; https://doi.org/10.1016/j.memsci.2020.117833.Search in Google Scholar

36. Sun, H. Z., Tang, B. B., Wu, P. Y. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal−organic framework nanoparticles. ACS Appl. Mater. Interfac. 2017, 9, 21473−21484; https://doi.org/10.1021/acsami.7b05504.Search in Google Scholar PubMed

37. Wei, Y., Chu, H. Q., Dong, B. Z., Li, X., Xia, S. J., Qiang, Z. M. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 2011, 272, 90–97; https://doi.org/10.1016/j.desal.2011.01.013.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0112).


Received: 2021-04-07
Accepted: 2021-06-08
Published Online: 2021-07-22
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0112/html
Scroll to top button