Abstract
In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree (GD) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51703118
Funding source: Yunnan Local Colleges Research Projects of China
Award Identifier / Grant number: 2019FH001-006
Funding source: Yunnan Reserve Talents for Young and Middle-aged Leaders in Academic and Technical Fields
Award Identifier / Grant number: 2019HB059
Funding source: Innovation Training Program of Chinese College Students
Award Identifier / Grant number: 202010684019 and 202010684028
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is financed by the National Natural Science Foundation of China (grant no. 51703118), Yunnan Local Colleges Research Projects of China (grant no. 2019FH001-006), Yunnan Reserve Talents for Young and Middle-aged Leaders in Academic and Technical Fields (2019HB059) and Innovation Training Program of Chinese College Students (grant nos. 202010684019 and 202010684028). We also appreciate the financial support from Yunnan Top Young Talents of Ten Thousand Talents Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yang, L. B., Wang, Z., Zhang, J. L. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal. J. Membr. Sci. 2017, 532, 76–86; https://doi.org/10.1016/j.memsci.2017.03.014.Search in Google Scholar
2. Zhang, J. C., Liu, L. F., Si, Y., Yu, J. Y., Ding, B. Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 2020, 30, 2002192; https://doi.org/10.1002/adfm.202002192.Search in Google Scholar
3. Xie, M. M., Huan, G. L., Xia, W. W., Feng, X., Chen, L., Zhao, Y. P. Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin. J. Polym. Eng. 2018, 38, 179–186; https://doi.org/10.1515/polyeng-2016-0372.Search in Google Scholar
4. Wei, R., Guo, J. B., Jin, L. Q., He, C., Xie, Y., Zhang, X., Zhao, W. F., Zhao, C. S. Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes. J. Mater. Chem. A. 2020, 8, 8934–8948; https://doi.org/10.1039/d0ta02154g.Search in Google Scholar
5. Zhao, X. Z., Liu, C. K. Efficient preparation of a novel PVDF antifouling membrane based on the solvent-responsive cleaning properties. Separ. Purif. Technol. 2019, 210, 100–106; https://doi.org/10.1016/j.seppur.2018.07.088.Search in Google Scholar
6. Zhao, J. J., Yang, Y., Li, C., Hou, L. A. Fabrication of GO modified PVDF membrane for dissolved organic matter removal: removal mechanism and antifouling property. Separ. Purif. Technol. 2019, 209, 482–490; https://doi.org/10.1016/j.seppur.2018.07.050.Search in Google Scholar
7. Beril Melbiah, J. S., Kaleekkal, N. J., Nithya Rabekkal, D., Rana, D., Nagendran, A., Mohan, D. Improved permeation, separation and antifouling performance of customized polyacrylonitrile ultrafiltration membranes. Chem. Eng. Res. Des. 2020, 159, 157–169; https://doi.org/10.1016/j.cherd.2020.04.014.Search in Google Scholar
8. Li, H., Zhu, L., Zhu, X., Chao, M., Xue, J. W., Sun, D. F., Xia, F. J., Xue, Q. Z. Dual-functional membrane decorated with flower-like metal–organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. J. Hazard Mater. 2021, 408, 124444; https://doi.org/10.1016/j.jhazmat.2020.124444.Search in Google Scholar PubMed
9. Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., Jaafar, J. Hydrophilic polymer-based membrane for oily wastewater treatment: a review. Separ. Purif. Technol. 2020, 233, 116007; https://doi.org/10.1016/j.seppur.2019.116007.Search in Google Scholar
10. Zhang, L. Y., He, Y., Ma, L., Chen, J. Y., Fan, Y., Zhang, S. H., Shi, H., Li, Z. Y., Luo, P. Y. Hierarchically stabilized PAN/β-FeOOH nanofibrous membrane for efficient water purification with excellent antifouling performance and robust solvent resistance. ACS Appl. Mater. Interfaces 2019, 11, 34487−34496; https://doi.org/10.1021/acsami.9b12855.Search in Google Scholar PubMed
11. Tripathi, B. P., Dubey, N. C., Subair, R., Choudhury, S., Stamm, M. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Adv. 2016, 6, 4448–4457; https://doi.org/10.1039/c5ra22160a.Search in Google Scholar
12. Kang, S., Asatekin, A., Mayes, A. M., Elimelech, M. Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J. Membr. Sci. 2007, 296, 42–50; https://doi.org/10.1016/j.memsci.2007.03.012.Search in Google Scholar
13. Zhang, F., Gao, S. J., Zhu, Y. Z., Jin, J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for highefficient oil/water separation. J. Membr. Sci. 2016, 513, 67–73; https://doi.org/10.1016/j.memsci.2016.04.020.Search in Google Scholar
14. Jiang, L. Y., Yun, J. H., Wang, Y. X., Yang, H., Xu, Z., Xu, Z. L. High-flux, anti-fouling dendrimer grafted PAN membrane: fabrication, performance and mechanisms. J. Membr. Sci. 2020, 596, 117743; https://doi.org/10.1016/j.memsci.2019.117743.Search in Google Scholar
15. Liu, W., Cai, M. H., He, Y. G., Wang, S., Zheng, J. W., Xu, X. P. Development of antibacterial polyacrylonitrile membrane modified with a covalently immobilized lysozyme. RSC Adv. 2015, 5, 84432–84438; https://doi.org/10.1039/c5ra14867g.Search in Google Scholar
16. Dai, Z. W., Wan, L. S., Xu, Z. K. Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. J. Membr. Sci. 2008, 325, 479–485; https://doi.org/10.1016/j.memsci.2008.08.013.Search in Google Scholar
17. Wang, Z. G., Wan, L. S., Xu, Z. K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview. J. Membr. Sci. 2007, 304, 8–23; https://doi.org/10.1016/j.memsci.2007.05.012.Search in Google Scholar
18. Li, P., Wang, Z., Yang, L. B., Zhao, S., Song, P., Khan, B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J. Membr. Sci. 2018, 555, 56–68; https://doi.org/10.1016/j.memsci.2018.03.018.Search in Google Scholar
19. Liu, Y. F., Xu, C., Xie, B. B., Hu, W. H., Li, Y., Yao, C. PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property. J. Coating Technol. Res. 2018, 15, 403–414; https://doi.org/10.1007/s11998-017-9995-5.Search in Google Scholar
20. Ma, H. W., Hyun, J. H., Stiller, P., Chilkoti, A. “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 2004, 16, 338–341; https://doi.org/10.1002/adma.200305830.Search in Google Scholar
21. Abedi, M., Sadeghi, M., Chenar, M. P. Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J. Taiwan. Inst. Chem. E. 2015, 55, 42–48; https://doi.org/10.1016/j.jtice.2015.03.038.Search in Google Scholar
22. Shen, X., Liu, P., He, C. X., Xia, S. B., Liu, J. J., Cheng, F. X., Suo, H. B., Zhao, Y. P., Chen, L. Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Separ. Purif. Technol. 2021, 255, 117418; https://doi.org/10.1016/j.seppur.2020.117418.Search in Google Scholar
23. Huang, C. J., Chu, S. H., Wang, L. C., Li, C. H., Lee, T. R. Bioinspired zwitterionic surface coatings with robust photostability and fouling resistance. ACS Appl. Mater. Interfaces 2015, 7, 23776−23786; https://doi.org/10.1021/acsami.5b08418.Search in Google Scholar PubMed
24. Cheng, Y., Wang, J. L., Li, M. L., Fu, F. F., Zhao, Y., Yu, J. Zwitterionic polymer-grafted superhydrophilic and superoleophobic silk fabrics for anti-oil applications. Macromol. Rapid Commun. 2020, 41, 2000162; https://doi.org/10.1002/marc.202000162.Search in Google Scholar PubMed
25. Ge, J. L., Zong, D. D., Jin, Q., Yu, J. Y., Ding, B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Funct. Mater. 2018, 28, 1705051; https://doi.org/10.1002/adfm.201705051.Search in Google Scholar
26. Zang, L. L., Zhen, S. X., Wang, L. B., Ma, J., Sun, L. G. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. J. Membr. Sci. 2020, 612, 118379; https://doi.org/10.1016/j.memsci.2020.118379.Search in Google Scholar
27. Li, L. L., Xiang, Y. Y., Yang, W. F., Liu, Z. L., Cai, M. R., Ma, Z. F., Wei, Q. B., Pei, X. W., Yu, B., Zhou, F. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. J. Colloid Interface Sci. 2020, 575, 388–398; https://doi.org/10.1016/j.jcis.2020.04.117.Search in Google Scholar PubMed
28. Yin, J., Zhou, J. C., Novel Polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination. 2015, 365, 46−56; https://doi.org/10.1016/j.desal.2015.02.017.Search in Google Scholar
29. Hikita, S., Shintani, T., Nakagawa, K., Matsuyama, H., Yoshioka, T. Structure control of hydrophilized PVDF hollow-fiber membranes using amphiphilic copolymers: PMMA-co-P (HEMA-co-MEA). J. Membr. Sci. 2020, 612, 118421; https://doi.org/10.1016/j.memsci.2020.118421.Search in Google Scholar
30. Zhu, Y. D., Yu, X. F., Zhang, T. H., Wang, X. F. Constructing zwitterionic coatings on thin-film nanofibrous composite membrane substrate for multifunctionality. Appl. Surf. Sci. 2019, 483, 979–990; https://doi.org/10.1016/j.apsusc.2019.04.063.Search in Google Scholar
31. Shen, X., Zhao, Y. P., Chen, L. The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance. Biofouling, 2013, 29, 991−1003; https://doi.org/10.1080/08927014.2013.823484.Search in Google Scholar PubMed
32. Zhao, Y. F., Zhang, P. B., Sun, J., Liu, C. J., Yi, Z., Zhu, L. P., Xu, Y. Y. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. J. Colloid Interface Sci. 2015, 448, 380–388; https://doi.org/10.1016/j.jcis.2015.01.084.Search in Google Scholar PubMed
33. Li, M. Z., Li, J. H., Shao, X. S., Miao, J., Wang, J. B., Zhang, Q. Q., Xu, X. P. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. J. Membr. Sci. 2012, 405–406, 141–148; https://doi.org/10.1016/j.memsci.2012.02.062.Search in Google Scholar
34. Shen, X., Yin, X. B., Zhao, Y. P., Chen, L. Improved protein fouling resistance of PVDF membrane grafted with the polyampholyte layers. Colloid Polym. Sci. 2015, 293, 1205–1213; https://doi.org/10.1007/s00396-015-3510-2.Search in Google Scholar
35. Zhang, C. X., Yin, C. C., Wang, Y. J., Zhou, J. M., Wang, Y. Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes. J. Membr. Sci. 2020, 599, 117833; https://doi.org/10.1016/j.memsci.2020.117833.Search in Google Scholar
36. Sun, H. Z., Tang, B. B., Wu, P. Y. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal−organic framework nanoparticles. ACS Appl. Mater. Interfac. 2017, 9, 21473−21484; https://doi.org/10.1021/acsami.7b05504.Search in Google Scholar PubMed
37. Wei, Y., Chu, H. Q., Dong, B. Z., Li, X., Xia, S. J., Qiang, Z. M. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 2011, 272, 90–97; https://doi.org/10.1016/j.desal.2011.01.013.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0112).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices