Abstract
MCM-41 and SBA-15 mesoporous silica materials with different pore sizes (3.08 nm for small pore size MCM-41 (P1), 5.89 nm for medium pore size SBA-15 (P2), and 7.81 nm for large pore size SBA-15 (P3)) were synthesized by the hydrothermal method and then functionalized with 3-aminopropyltrietoxysilane by postsynthesis treatments. Next, polysulfone-mesoporous silica mixed matrix membranes (MMMs) were prepared by the solution casting method. The obtained materials and MMMs were characterized by various techniques including X-ray diffraction, scanning electron microscopy, and N2 adsorption-desorption, and Brunauer-Emmett-Teller method to examine the crystallinity, morphology, and particle size, pore volume, specific surface area, and pore size distribution, respectively. Finally, the gas permeation rates of prepared MMMs were measured in 8 bar and 25 °C and the effect of pore size of modified and unmodified mesoporous silica on the gas separation performance of these MMMs were investigated. The experimental results indicate that the carbon dioxide (CO2) and methane (CH4) permeability and CO2/CH4 selectivity were increased with an enhancement in the particle pore size.
Funding source: Ferdowsi University of Mashhad
Acknowledgments
The authors thank Dr. Saberi from Faculty of Chemical Engineering, Bushehr branch of Islamic Azad University, for his kind assistance and suggestions during this research work.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors would like to express their appreciation for the financial support received from the Ferdowsi University of Mashhad, Iran.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Brunetti, A., Scura, F., Barbieri, G., Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci. 2010, 359, 115–125; https://doi.org/10.1016/j.memsci.2009.11.040.Search in Google Scholar
2. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185; https://doi.org/10.1016/0376-7388(91)80060-j.Search in Google Scholar
3. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400; https://doi.org/10.1016/j.memsci.2008.04.030.Search in Google Scholar
4. Chung, T. S., Jiang, L. Y., Li, Y., Kulprathipanj, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507; https://doi.org/10.1016/j.progpolymsci.2007.01.008.Search in Google Scholar
5. Kim, S., Pechar, T. W., Marand, E. Poly(imidesiloxane) and carbon nano tube mixed matrix membranes for gas separation. Desalination 2006, 192, 330–339; https://doi.org/10.1016/j.desal.2005.03.098.Search in Google Scholar
6. Tirouni, I., Sadeghi, M., Pakizeh, M. Separation of C3H8 and C2H6 from CH4 in polyurethane–zeolite 4 Å and ZSM-5 mixed matrix membranes. Separ. Purif. Technol. 2015, 141, 394–402; https://doi.org/10.1016/j.seppur.2014.12.012.Search in Google Scholar
7. Sadeghi, M., Semsarzadeh, M. A., Moadel, H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J. Membr. Sci. 2009, 331, 21–30; https://doi.org/10.1016/j.memsci.2008.12.073.Search in Google Scholar
8. Han, S. H., Kim, G. W., Jung, C. H., Lee, Y. M. Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials. Desalination 2008, 233, 88–95; https://doi.org/10.1016/j.desal.2007.09.030.Search in Google Scholar
9. Hashemifard, S. A., Ismail, A. F., Matsuura, T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J. Colloid Interface Sci. 2011, 359, 359–370; https://doi.org/10.1016/j.jcis.2011.03.077.Search in Google Scholar PubMed
10. Sanip, S., Ismail, A. F., Goh, P., Soga, T., Tanemura, M., Yasuhiko, H. Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Separ. Purif. Technol. 2011, 78, 208–213; https://doi.org/10.1016/j.seppur.2011.02.003.Search in Google Scholar
11. Song, Q., Nataraj, S., Roussenova, M. V., Tan, J. C., Hughes, D. J., Li, W., Bourgoin, P., Alam, M. A., Cheetham, A. K., Al-Muhtaseb, S. A. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369; https://doi.org/10.1039/c2ee21996d.Search in Google Scholar
12. Reid, B. D., Ruiz-Trevino, F. A., Musselman, I. H., Balkus, K. J., Ferraris, J. P. Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem. Mater. 2001, 13, 2366–2373; https://doi.org/10.1021/cm000931+.10.1021/cm000931+Search in Google Scholar
13. Kim, S., Marand, E. High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous Mesoporous Mater 2008, 114, 129–136; https://doi.org/10.1016/j.micromeso.2007.12.028.Search in Google Scholar
14. Jomekian, A., Pakizeh, M., Shafiee, A. R., Mansoori, S. A. A. Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS. Separ. Purif. Technol. 2011, 80, 556–565; https://doi.org/10.1016/j.seppur.2011.06.011.Search in Google Scholar
15. Shen, Y., Lua, A. C. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem. Eng. J. 2012, 192, 201–210; https://doi.org/10.1016/j.cej.2012.03.066.Search in Google Scholar
16. Xu, J., Chu, W., Luo, S. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. J. Mol. Catal. Chem. 2006, 256, 48–56; https://doi.org/10.1016/j.molcata.2006.03.078.Search in Google Scholar
17. Xu, W., Luo, Q., Wang, H., Francesconi, L. C., Stark, R. E., Akins, D. L. Polyoxoanion occluded within modified MCM-41: spectroscopy and structure. J. Phys. Chem. B 2003, 107, 497–501; https://doi.org/10.1021/jp0267499.Search in Google Scholar
18. Llewellyn, P. L., Ciesla, U., Decher, H., Stadler, R., Schueth, F., Unger, K. K. MCM-41 and related materials as media for controlled polymerization processes. Stud. Surf. Sci. Catal. 1994, 84, 2013–2020; https://doi.org/10.1016/s0167-2991(08)63762-3.Search in Google Scholar
19. Sierra, L., Lopez, B., Guth, J. L. Preparation of mesoporous silica particles with controlled morphology from sodium silicate solutions and a non-ionic surfactant at pH values between 2 and 6. Microporous Mesoporous Mater. 2000, 39, 519–527; https://doi.org/10.1016/s1387-1811(00)00227-4.Search in Google Scholar
20. Pechar, T. W., Kim, S., Vaughan, B., Marand, E., Baranauskas, V., Riffle, J., Jeong, H. K., Tsapatsis, M. Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane. J. Membr. Sci. 2006, 277, 210; https://doi.org/10.1016/j.memsci.2005.10.031.Search in Google Scholar
21. Antochshuk, V., Jaroniec, M. Functionalized mesoporous materials obtained via interfacial reactions in self-assembled silica-surfactant systems. Chem. Mater. 2000, 12, 2496–2501; https://doi.org/10.1021/cm000268p.Search in Google Scholar
22. Gartmann, N., Brühwiler, D. Controlling and imaging the functional-group distribution on mesoporous silica. Angew. Chem. Int. Ed. 2009, 48, 6354–6356; https://doi.org/10.1002/anie.200902436.Search in Google Scholar PubMed
23. Huh, S., Wiench, J. W., Yoo, J. C., Pruski, M., Lin, V. S. Y. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem. Mater. 2003, 15, 4247–4256; https://doi.org/10.1021/cm0210041.Search in Google Scholar
24. Wang, X., Kyle, S. K. L., Jerry, C. C., Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 2005, 109, 1763–1769; https://doi.org/10.1021/jp045798d.Search in Google Scholar PubMed
25. Maria Chong, A. S., Zhao, X. S. Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem. B 2003, 107, 12650–12657; https://doi.org/10.1021/jp035877+.10.1021/jp035877+Search in Google Scholar
26. Brühwiler, D. Post-synthetic functionalization of mesoporous silica. Nanoscale 2010, 2, 887–892; https://doi.org/10.1039/c0nr00039f.Search in Google Scholar PubMed
27. Hara, K., Akahane, S., Wiench, J. W., Burgin, B. R., Ishito, N., Lin, V. S. Y., Fukuoka, A., Pruski, M. Selective and efficient silylation of mesoporous silica: aquantitative assessment of synthetic strategies by solid-state NMR. J. Phys. Chem. C 2012, 116, 7083–7090; https://doi.org/10.1021/jp300580f.Search in Google Scholar
28. ALOthman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902; https://doi.org/10.3390/ma5122874.Search in Google Scholar
29. Rahmat, N., Abdullah, A. Z., Mohamed, A. A review: mesoporous santa barbara amorphous-15, types, synthesis and its applications towards biorefinery production. Am. J. Appl. Sci. 2010, 7, 1579–1586; https://doi.org/10.3844/ajassp.2010.1579.1586.Search in Google Scholar
30. Johansson, E. M., Ballem, M. A., Cordoba, J. M., Oden, M. Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. Langmuir 2011, 27, 4994–4999; https://doi.org/10.1021/la104864d.Search in Google Scholar PubMed
31. Laghaei, M., Sadeghi, M., Ghalei, B., Dinari, M. The effect of various types of post synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Prog. Org. Coating 2016, 90, 163–170; https://doi.org/10.1016/j.porgcoat.2015.10.007.Search in Google Scholar
32. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036; https://doi.org/10.1021/ja974025i.Search in Google Scholar
33. Sabri, A. A., Albayati, T. M., Alazawi, R. A. Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue. Kor. J. Chem. Eng. 2015, 32, 1835–1841; https://doi.org/10.1007/s11814-014-0390-y.Search in Google Scholar
34. Laghaei, M., Sadeghi, M., Ghalei, B., Shahrooz, M. The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: polyethersulfone/MCM-41. J. Membr. Sci. 2016, 513, 20–32; https://doi.org/10.1016/j.memsci.2016.04.039.Search in Google Scholar
35. Hu, Q., Marand, E., Dhingra, S., Fritsch, D., Wen, J., Wilkes, G. Poly(amide–imide)/TiO, nano-composite gas separation membranes: fabrication and characterization. J. Membr. Sci. 1997, 135, 65–79; https://doi.org/10.1016/s0376-7388(97)00120-8.Search in Google Scholar
36. Chen, H., Wang, Y. C. Preparation of MCM-41 with high thermal stability and complementary textural porosity. Ceram. Int. 2002, 28, 541–547; https://doi.org/10.1016/s0272-8842(02)00007-x.Search in Google Scholar
37. Cai, Q., Luo, Z. S., Pang, W. Q., Fan, Y. W., Chen, X. H., Cui, F. Z. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater. 2001, 13, 258–263; https://doi.org/10.1021/cm990661z.Search in Google Scholar
38. Anunziata, O. A., Beltramone, A. R., Martinez, M. L., Belon, L. L. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J. Colloid Interface Sci. 2007, 315, 184–190; https://doi.org/10.1016/j.jcis.2007.06.033.Search in Google Scholar PubMed
39. Zhao, D., Feng, J., Huo, Q., Melosh, N., Frederichson, G. H., Chmelka, B. F., Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 1998, 279, 548–552; https://doi.org/10.1126/science.279.5350.548.Search in Google Scholar PubMed
40. Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multi molecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319; https://doi.org/10.1021/ja01269a023.Search in Google Scholar
41. Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380; https://doi.org/10.1021/ja01145a126.Search in Google Scholar
42. Kim, S., Ida, J., Guliants, V. V., Lin, Y. S. Tailoring surface properties of MCM-48 silica by bonding 3-aminopropyltriethoxysilane for selective adsorption of carbon dioxide. J. Phys. Chem. B 2005, 109, 6287–6293; https://doi.org/10.1021/jp045634x.Search in Google Scholar PubMed
43. Arumugam, A., Ponnusami, V. Modified SBA-15 synthesized using sugarcane leaf ash for nickel adsorption. Indian J. Chem. Technol. 2013, 20, 101–105.Search in Google Scholar
44. Wang, A., Ji, Y., Yin, H., Liu, S. Synthesis of different-sized SBA-15 nanoparticles and their fluoride release performances from poly(methyl methacrylate) dental restorative resin. New J. Chem. 2016, 11, 9781–9787; https://doi.org/10.1039/c6nj02075e.Search in Google Scholar
45. Cai, Q., Luo, Z. S., Pang, W. Q., Fan, Y. W., Chen, X. H., Cui, F. Z. A simple route for preparing radiolarian-like mesoporous silica from water–diethyl ether binary solvent system. Chem. Mater. 2001, 13, 258–263; https://doi.org/10.1021/cm990661z.Search in Google Scholar
46. Weng, T. H., Tseng, H. H., Wey, M. Y. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. J. Membr. Sci. 2011, 369, 550–559; https://doi.org/10.1016/j.memsci.2010.12.039.Search in Google Scholar
47. Sun, Y., Zhang, Z., Wong, C. P. Study on mono-dispersed nano-size silica by surface modification for underfill applications. J. Colloid Interface Sci. 2005, 292, 436–440; https://doi.org/10.1016/j.jcis.2005.05.067.Search in Google Scholar PubMed
48. Posudievsky, O. Y., Telbiz, G. M., Rossokhaty, V. K. Effect of solvent nature on liquid-phase self-assembly of MEH-PPV/MCM-41 guest–host composites. J. Mater. Chem. 2006, 16, 2485–2489; https://doi.org/10.1039/b518380d.Search in Google Scholar
49. Ge, L., Zhu, Z., Rudolph, V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Separ. Purif. Technol. 2011, 78, 76–82; https://doi.org/10.1016/j.seppur.2011.01.024.Search in Google Scholar
50. Murali, R. S., Ismail, A. F., Rahman, M. A., Sridhar, S. Mixed matrix membranes of Pebax-1657 loaded with 4 A zeolite for gaseous separations. Separ. Purif. Technol. 2014, 129, 1–8; https://doi.org/10.1016/j.seppur.2014.03.017.Search in Google Scholar
51. Sadeghi, M., Khanbabaei, G., Dehaghani, A. H. S., Aravand, M. A., Akbarzade, M., Khatti, S. Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J. Membr. Sci. 2008, 322, 423–428; https://doi.org/10.1016/j.memsci.2008.05.077.Search in Google Scholar
52. Li, Y., Chung, T. S., Cao, C., Kulprathipanja, S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)–zeolite A mixed matrix membranes. J. Membr. Sci. 2005, 260, 45–55; https://doi.org/10.1016/j.memsci.2005.03.019.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices