Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
-
Yangnan Yu
, Yang Pan
, Ru Xia
Abstract
In this work, a series of bimodal polymethyl methacrylate (BPMMA) was fabricated via solution-blending two neat PMMA resins. Rheology, DMTA, thermal infrared imager measurements were used in an attempt to probe the internal structure of the as-prepared BPMMA. It was demonstrated that the thermorheological behavior of the BPMMA was heavily dependent on shear rate, temperature as well as blending ratio. In addition, a typical “V-shaped” response, namely, a dip in storage modulus (G′) followed by an upturn in the plot of G′ versus measuring temperature for D4 (with lower weight-average molecular weight) was observed, characteristic of occurrence of thermorheological complexity. Our experimental results of physical–mechanical testings suggested that the BPMMA had better comprehensive properties than those of their neat PMMA counterparts.
Funding source: National Key R & D Program of China 10.13039/501100012166
Award Identifier / Grant number: 2017YFB0406204
Funding source: National Natural Science Foundation of China 10.13039/501100001809
Award Identifier / Grant number: 51973002
Funding source: University Collaborative Innovation Project of Anhui Province
Award Identifier / Grant number: GXXT-2019-001
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors acknowledge the financial support from the National Key R & D Program of China (2017YFB0406204), the National Natural Science Foundation of China (51973002), and the University Collaborative Innovation Project of Anhui Province (GXXT-2019-001) as well as “211 Project” of Anhui University. Dr. B. Yang is also indebted to Anqing Taihu Jinzhang Sci & Tech Co., China for the financial support received.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Palm, G., Dupaix, R. B., Castro, J. Eng. Mater. Technol. 2006, 128, 559–563. https://doi.org/10.1115/1.2345447.Search in Google Scholar
2. Silvia, G., Daniele, C., Vito, D. N., Lidia, A., Eugenio, T. Eur. Polym. J. 2007, 43, 673–696. https://doi.org/10.1157/13112971.Search in Google Scholar
3. Xu, Y. T., Xu, H. L., Zheng, Q., Song, Y. H. J. Appl. Polym. Sci. 2019, 136, 48007. https://doi.org/10.1002/app.48007.Search in Google Scholar
4. Babu, R. R., Singha, N. K., Naskar, K. Express Polym. Lett. 2010, 4, 197–209. https://doi.org/10.3144/expresspolymlett.2010.26.Search in Google Scholar
5. Nooma, S., Magaraphan, R. C. Polym. Bull. 2019, 76, 3329–3354. https://doi.org/10.1007/s00289-018-2547-z.Search in Google Scholar
6. Song, S., Li, Q., Zhang, C., Liu, Z., Fan, X., Zhang, Y. Nanotechnology 2021, 32, 195709. https://doi.org/10.1088/1361-6528/abe2ca.Search in Google Scholar PubMed
7. Lazouzi, G. A., Vuksanovic, M. M., Tomic, N., Petrovic, M., Spasojevic, P., Radojevic, V., Heinemann Radmila, J. Polym. Compos. 2019, 40, 1691–1701. https://doi.org/10.1002/pc.24952.Search in Google Scholar
8. Siot, A., Leger, R., Longuet, C., Otazaghine, B., Caro-Bretelle, A. S., Azema, N. Composites Part B 2019, 157, 163–172. https://doi.org/10.1016/j.compositesb.2018.08.104.Search in Google Scholar
9. Sharma, R., Mahto, V., Vuthaluru, H. Fuel 2019, 235, 1245–1259. https://doi.org/10.1016/j.fuel.2018.08.125.Search in Google Scholar
10. Shih, Y. F., Chou, M. Y., Lian, H. Y., Hsu, L. R., Chen-Wei, S. M. Express Polym. Lett. 2018, 12, 844–854. https://doi.org/10.3144/expresspolymlett.2018.72.Search in Google Scholar
11. Gao, X. B., Mei, S., Yong, X. Y., Zhao, D. Y., Bao, J. P., Deng, J. P. Fibers Polym. 2019, 20, 2254–2260. https://doi.org/10.1007/s12221-019-9067-9.Search in Google Scholar
12. Moreno, J., Paredes, B., Carrero, A., Velez, D. Chem. Eng. J. 2017, 315, 46–57. https://doi.org/10.1016/j.cej.2016.12.136.Search in Google Scholar
13. Zhai, Z. Q., Fusco, C., Morthomas, J. L., Perez, M., Lame, O. ACS Nano 2019, 13, 11310–11319. https://doi.org/10.1021/acsnano.9b04459.Search in Google Scholar PubMed
14. Moyassari, A., Gkourmpis, T., Hedenqvist, M. S., Gedde, U. W. Macromolecules 2019, 52, 807–818. https://doi.org/10.1021/acs.macromol.8b01874.Search in Google Scholar
15. Hu, Y. L., Shao, Y. Q., Liu, Z., He, X. L., Liu, B. P. Polymers 2019, 11, 1140. https://doi.org/10.3390/polym11111840.Search in Google Scholar PubMed PubMed Central
16. Bie, D. K., Jiang, L. B., Zhu, M. J., Miao, W. J., Wang, Z. B. J. Polym. Sci. 2019, 61, 627–634. https://doi.org/10.1134/s0965545x19050043.Search in Google Scholar
17. Yu, W., Li, R., Zhou, C. Polymer 2011, 52, 2693–2700. https://doi.org/10.1016/j.polymer.2011.04.024.Search in Google Scholar
18. Yeganeh, J. K., Goharpey, F., Foudazi, R. RSC Adv. 2012, 2, 8116–8127. https://doi.org/10.1039/c2ra21307a.Search in Google Scholar
19. Shahrezaei, M. A. S., Goharpey, F., Yeganeh, J. K. Polym. Eng. Sci. 2018, 58, 928–942. https://doi.org/10.1002/pen.24648.Search in Google Scholar
20. Luo, H., Xiao, Z. L., Chen, Y. L., Niu, Y. H., Li, G. X. Polymer 2017, 123, 290–300. https://doi.org/10.1016/j.polymer.2017.07.023.Search in Google Scholar
21. Huang, X., Chen, S. B., Wan, S. H., Niu, B., He, X. R., Zhang, R. Polymers 2020, 12, 490. https://doi.org/10.3390/polym12020490.Search in Google Scholar PubMed PubMed Central
22. Hammani, S., Moulai-Mostefa, N., Samyn, P., Bechelany, M., Dufresne, A., Barhoum, A. Materials 2020, 13, 926. https://doi.org/10.3390/ma13040926.Search in Google Scholar PubMed PubMed Central
23. Stan, F., Stanciu, N. V., Fetecau, C. Compos. Part B 2017, 110, 20–31. https://doi.org/10.1016/j.compositesb.2016.10.071.Search in Google Scholar
24. Kolodka, E., Wang, W. J., Zhu, S. P., Hamielec, A. J. Appl. Polym. Sci. 2004, 92, 307–316. https://doi.org/10.1002/app.13705.Search in Google Scholar
25. Lima, P., da Silva, S. P. M., Oliveira, J., Costa, V. Polym. Test. 2015, 45, 58–67. https://doi.org/10.1016/j.polymertesting.2015.05.006.Search in Google Scholar
26. Wolf, B. A. Macromol. Chem. Phys. 2020, 221, 2000130. https://doi.org/10.1002/macp.202000130.Search in Google Scholar
27. Li, W. Z., Niu, Y. H., Zhou, C. T., Luo, H., Li, G. X. Chin. J. Polym. Sci. 2017, 35, 1402–1414. https://doi.org/10.1007/s10118-017-1997-3.Search in Google Scholar
28. Niu, Y. H., Liang, W. B., Zhang, Y. L., Chen, X. L., Lai, S. Y., Lia, G. X., Wang, D. J. Chin. J. Polym. Sci. 2016, 34, 1117–1128. https://doi.org/10.1007/s10118-016-1819-z.Search in Google Scholar
29. Moskova, D. J., Janigova, I., Nogellova, Z., Sednickova, M., Jankovic, L., Komadel, P., Slouf, M., Chodak, I. Polym. Test. 2018, 69, 359–365.10.1016/j.polymertesting.2018.05.035Search in Google Scholar
30. Rolere, S., Cartault, M., Sainte-Beuve, J., Bonfils, F. Polym. Test. 2017, 61, 378–385. https://doi.org/10.1016/j.polymertesting.2017.05.043.Search in Google Scholar
31. Hassankiadeh, N. T., Cui, Z. L., Kim, J. H., Shin, D. W., Sanguineti, A., Arcella, V., Lee, Y. M., Drioli, E. J. Membr. Sci. 2014, 471, 237–246. https://doi.org/10.1016/j.memsci.2014.07.060.Search in Google Scholar
32. Xiao, Z. L., Larson, R. G., Chen, Y. L., Zhou, C. T., Niu, Y. H., Li, G. X. Soft Matter 2016, 12, 1–12. https://doi.org/10.1039/c6sm01220e.Search in Google Scholar PubMed
33. Andrzejewski, J., Skórczewska, K., Kloziński, A. Polymers 2020, 12, 307. https://doi.org/10.3390/polym12020307.Search in Google Scholar PubMed PubMed Central
34. Li, Z. P., Lu, X., Tao, G., Guo, J. H., Jiang, H. W. Polym. Eng. Sci. 2016, 56, 97–102. https://doi.org/10.1002/pen.24196.Search in Google Scholar
35. Xia, L. C., Li, C. H., Zhang, X. M., Wang, J. F., Wu, H., Guo, S. Y. Polymer 2018, 141, 70–78. https://doi.org/10.1016/j.polymer.2018.03.009.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices