Home Kinetic study of the pyrolysis of polypropylene over natural clay
Article
Licensed
Unlicensed Requires Authentication

Kinetic study of the pyrolysis of polypropylene over natural clay

  • Jan Nisar EMAIL logo , Yousaf Khan , Ghulam Ali EMAIL logo , Afzal Shah , Zahoor H. Farooqi ORCID logo , Munawar Iqbal and Muhammad Naeem Ashiq
Published/Copyright: July 1, 2021
Become an author with De Gruyter Brill

Abstract

Clay is widely used in numerous industrial activities; however, its application as an efficient catalyst for the decomposition of plastic waste on a commercial scale is scanty. Therefore, in this study, we have made efforts to use natural clay as the catalyst for the thermal decomposition of polypropylene in a pyrolysis setup. The pyrolysis oil obtained was found rich in hydrocarbons ranging from C8–C35. Kinetics of the pyrolysis reaction was determined utilizing thermogravimetric data and the activation energy (E) and A-factor were observed as 70.33–94.80 kJ/mol and 6 × 105–2.3 × 108 min−1 using the Ozawa-Flynn-Wall method and 58.19–74.82 kJ/mol and 4.1 × 102–4.2 × 103 min−1 applying Tang Wanjun equation. The activation energy was found to increase with enhancement in conversion presenting a complex decomposition reaction. Comparing the activation energy determined in this work with previous studies confirmed that natural clay has reduced E of decomposition reaction at high fraction conversion. The pyrolysis results supported with the kinetic investigation in this work would have potential applications in disposing of plastic waste on an industrial scale and a step forward in the field of waste management.


Corresponding authors: Jan Nisar and Ghulam Ali, National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan, E-mail: (J. Nisar), (G. Ali)

Award Identifier / Grant number: 20-1491

Acknowledgments

The authors are thankful to Mr. Sharafatullah Khan for providing clay sample for this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Higher Education Commission, Pakistan is acknowledged for grant no. 20-1491.

  3. Conflicts of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kyaw, K. T., Hmwe, C. S. S. Effect of various catalysts on fuel oil pyrolysis process of mixed plastic wastes. Int. J. Adv. Eng. Technol. 2015, 8, 794.Search in Google Scholar

2. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Conver. Manag. 2016, 115, 308–326; https://doi.org/10.1016/j.enconman.2016.02.037.Search in Google Scholar

3. Singh, R. K., Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171; https://doi.org/10.1016/j.fuel.2016.01.049.Search in Google Scholar

4. Demirbas, A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrol. 2004, 72, 97–102; https://doi.org/10.1016/j.jaap.2004.03.001.Search in Google Scholar

5. Scott, D., Czernik, S., Piskorz, J., Radlein, D. S. A. Fast pyrolysis of plastic wastes. Energy Fuels 1990, 4, 407–411; https://doi.org/10.1021/ef00022a013.Search in Google Scholar

6. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., Ismail, I., Nizami, A. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterio. Biodegrad. 2017, 119, 239–252; https://doi.org/10.1016/j.ibiod.2016.09.017.Search in Google Scholar

7. Yan, G., Jing, X., Wen, H., Xiang, S. Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure. Energy Fuels 2015, 29, 2289–2298; https://doi.org/10.1021/ef502919f.Search in Google Scholar

8. Silvarrey, L. D., Phan, A. Kinetic study of municipal plastic waste. Int. J. Hydro. Energy 2016, 41, 16352–16364; https://doi.org/10.1016/j.ijhydene.2016.05.202.Search in Google Scholar

9. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., Nizami, A. Catalytic pyrolysis of plastic waste: a review. Pro. Saf. Environ. Prot. 2016, 102, 822–838; https://doi.org/10.1016/j.psep.2016.06.022.Search in Google Scholar

10. Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., Ahmad, W. Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy 2015, 12, 663–671; https://doi.org/10.1080/15435075.2014.880146.Search in Google Scholar

11. Galwey, A. K., Brown, M. E. Arrhenius parameters and compensation behaviour in solid-state decompositions. Thermochim. Acta 1997, 300, 107–115; https://doi.org/10.1016/s0040-6031(96)03120-6.Search in Google Scholar

12. Nisar, J., Ali, G., Shah, A., Shah, M. R., Iqbal, M., Ashiq, M. N., Bhatti, H. N. Pyrolysis of expanded waste polystyrene: influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution. Energy Fuels 2019, 33, 12666–12678; https://doi.org/10.1021/acs.energyfuels.9b03004.Search in Google Scholar

13. Eze, W. U., Madufor, I. C., Onyeagoro, G. N., Obasi, H. C., Ugbaja, M. I. Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull. 2020, 1–22.10.1007/s00289-020-03116-4Search in Google Scholar

14. Eze, W. U., Madufor, I. C., Onyeagoro, G. N., Obasi, H. C. The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull. 2020, 77, 1399–1415; https://doi.org/10.1007/s00289-019-02806-y.Search in Google Scholar

15. Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., Farooq, A., Rashid, N., Wu, D. Low temperature conversion of plastic waste into light hydrocarbons. J. Hazar. Mat. 2010, 179, 15–20; https://doi.org/10.1016/j.jhazmat.2010.01.134.Search in Google Scholar PubMed

16. Li, K., Lee, S. W., Yuan, G., Lei, J., Lin, S., Weerachanchai, P., Yang, Y., Wang, J.-Y. Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies 2016, 9, 431; https://doi.org/10.3390/en9060431.Search in Google Scholar

17. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368; https://doi.org/10.1016/j.rser.2017.01.142.Search in Google Scholar

18. Chin, B. L. F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C., Sulaiman, S. A. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers. Manag. 2014, 87, 746–753; https://doi.org/10.1016/j.enconman.2014.07.043.Search in Google Scholar

19. Vasudeo, R. A., Abitha, V., Vinayak, K., Jayaja, P., Gaikwad, S. Sustainable development through feedstock recycling of plastic wastes. In Macromolecular Symposia. Wiley Online Library, 2016.10.1002/masy.201500107Search in Google Scholar

20. Nisar, J., Khan, M. A., Ali, G., Iqbal, M., Shah, A., Shah, M. R., Sherazi, S. T. H., Shah, L. A., Rehman, N. U. Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution. J. Polym. Eng. 2019, 39, 785–793; https://doi.org/10.1515/polyeng-2019-0077.Search in Google Scholar

21. Nisar, J., Awan, I. A., Iqbal, M., Khan, R. A., Shah, A., Razaq, R. Kinetics of the gas-phase thermal decomposition of 3-chloropropene. Chem. Phys. Lett. 2016, 661, 200–205; https://doi.org/10.1016/j.cplett.2016.08.060.Search in Google Scholar

22. Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Ullah, R., Akhter, M. S. Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag. 2019, 88, 236–247; https://doi.org/10.1016/j.wasman.2019.03.035.Search in Google Scholar

23. Liu, M., Zhuo, J. K., Xiong, S. J., Yao, Q. Catalytic degradation of high-density polyethylene over a clay catalyst compared with other catalysts. Energy Fuels 2014, 28, 6038–6045; https://doi.org/10.1021/ef501326k.Search in Google Scholar

24. Sengupta, P., Saikia, P. C., Borthakur, P. C. SEM-EDX Characterization of an Iron-Rich Kaolinite Clay. J. Sci. Ind. Res. 2008, 67, 812–818.Search in Google Scholar

25. Garcia, D., Guo, R., Bhalla, A. Growth and properties of Ba0. 9Sr0. 1TiO3 single crystal fibers. Mater. Lett. 2000, 42, 136–141; https://doi.org/10.1016/s0167-577x(99)00172-x.Search in Google Scholar

26. Kareiva, A., Tautkus, S., Rapalaviciute, R., Jørgensen, J.-E., Lundtoft, B. Sol-gel synthesis and characterization of barium titanate powders. J. Mater. Sci. 1999, 34, 4853–4857; https://doi.org/10.1023/a:1004615912473.10.1023/A:1004615912473Search in Google Scholar

27. Feng, J., Hu, X., Yue, P. L. Novel bentonite clay-based Fe− nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environ. Sci. Technol. 2004, 38, 269–275; https://doi.org/10.1021/es034515c.Search in Google Scholar

28. Ali, M. F., Qureshi, M. S. Catalyzed pyrolysis of plastics: a thermogravimetric study. Afr. J. Pure Appl. Chem. 2011, 5, 219–223; https://doi.org/10.5897/ajpac111230.Search in Google Scholar

29. Guo, Y.-H., Pu, M., Wu, J.-Y., Zhang, J.-Y., Chen, B.-H. Theoretical study of the cracking mechanisms of linear α-olefins catalyzed by zeolites. Appl. Surf. Sci. 2007, 254, 604–609; https://doi.org/10.1016/j.apsusc.2007.06.039.Search in Google Scholar

30. Pacheco Filho, J. G. A., Graciliano, E. C., Silva, A. O. S., Souza, M. J., Araujo, A. S. Thermo gravimetric kinetics of polypropylene degradation on ZSM-12 and ZSM-5 catalysts. Catal. Today 2005, 107, 507–512; https://doi.org/10.1016/j.cattod.2005.07.065.Search in Google Scholar

31. Marcilla, A., Gomez, A., Reyes-Labarta, J., Giner, A., Hernández, F. Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst. J. Anal. Appl. Pyrolysis 2003, 68, 467–480; https://doi.org/10.1016/s0165-2370(03)00036-6.Search in Google Scholar

32. Khawam, A., Flanagan, D. R. Desolvation kinetics of sulfameter solvates. J. Pharm. Sci. 2008, 97, 2160–2175; https://doi.org/10.1002/jps.21144.Search in Google Scholar PubMed

33. Ali, G., Nisar, J., Iqbal, M., Shah, A., Abbas, M., Shah, M. R., Rashid, U., Bhatti, I. A., Khan, R. A., Shah, F. Thermo-catalytic decomposition of polystyrene waste: comparative analysis using different kinetic models. Waste Manag. Res. 2020, 38, 202–212; https://doi.org/10.1177/0734242x19865339.Search in Google Scholar

34. Koga, N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim. Acta 1994, 244, 1–20; https://doi.org/10.1016/0040-6031(94)80202-5.Search in Google Scholar

35. Nisar, J., Khan, M. A., Iqbal, M., Shah, A., Khan, R. A., Sayed, M., Mahmood, T. Comparative study of kinetics of the thermal decomposition of polypropylene using different methods. Adv. Polym. Technol. 2018, 37, 1168–1175; https://doi.org/10.1002/adv.21776.Search in Google Scholar

36. Rantuch, P., Kačíková, D., Nagypál, B. Investigation of activation energy of polypropylene composite thermooxidation by model-free methods. Eur. J. Environ. Saf. Sci. 2014, 2, 12–18.Search in Google Scholar

37. Karisathan Sundararajan, N., Ramachandran Bhagavathi, A. Experimental investigation on thermocatalytic pyrolysis of HDPE plastic waste and the effects of its liquid yield over the performance, emission, and combustion characteristics of CI engine. Energy Fuels 2016, 30, 5379–5390; https://doi.org/10.1021/acs.energyfuels.6b00407.Search in Google Scholar

38. Kassargy, C., Awad, S., Burnens, G., Kahine, K., Tazerout, M. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. J. Anal. Appl. Pyrol. 2017, 127, 31–37; https://doi.org/10.1016/j.jaap.2017.09.005.Search in Google Scholar

39. Jiraroj, D., Chaipurimat, A., Kerdsa, N., Hannongbua, S., Tungasmita, D. N. Catalytic cracking of polypropylene using aluminosilicate catalysts. J. Anal. Appl. Pyrol. 2016, 120, 529–539; https://doi.org/10.1016/j.jaap.2016.07.008.Search in Google Scholar

40. Hakeem, I. G., Aberuagba, F., Musa, U. Catalytic pyrolysis of waste polypropylene using Ahoko kaolin from Nigeria. Appl. Petrochem. Res. 2018, 8, 203–210; https://doi.org/10.1007/s13203-018-0207-8.Search in Google Scholar

41. Tekin, K., Akalın, M., Kadı, Ç., Karagöz, S. Catalytic degradation of waste polypropylene by pyrolysis. J. Energy Inst. 2012, 85, 150–155; https://doi.org/10.1179/1743967112z.00000000029.Search in Google Scholar

Received: 2021-01-26
Accepted: 2021-05-22
Published Online: 2021-07-01
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0002/html
Scroll to top button