Abstract
Clay is widely used in numerous industrial activities; however, its application as an efficient catalyst for the decomposition of plastic waste on a commercial scale is scanty. Therefore, in this study, we have made efforts to use natural clay as the catalyst for the thermal decomposition of polypropylene in a pyrolysis setup. The pyrolysis oil obtained was found rich in hydrocarbons ranging from C8–C35. Kinetics of the pyrolysis reaction was determined utilizing thermogravimetric data and the activation energy (E) and A-factor were observed as 70.33–94.80 kJ/mol and 6 × 105–2.3 × 108 min−1 using the Ozawa-Flynn-Wall method and 58.19–74.82 kJ/mol and 4.1 × 102–4.2 × 103 min−1 applying Tang Wanjun equation. The activation energy was found to increase with enhancement in conversion presenting a complex decomposition reaction. Comparing the activation energy determined in this work with previous studies confirmed that natural clay has reduced E of decomposition reaction at high fraction conversion. The pyrolysis results supported with the kinetic investigation in this work would have potential applications in disposing of plastic waste on an industrial scale and a step forward in the field of waste management.
Funding source: Higher Education Commission, Pakistan
Award Identifier / Grant number: 20-1491
Acknowledgments
The authors are thankful to Mr. Sharafatullah Khan for providing clay sample for this work.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Higher Education Commission, Pakistan is acknowledged for grant no. 20-1491.
-
Conflicts of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kyaw, K. T., Hmwe, C. S. S. Effect of various catalysts on fuel oil pyrolysis process of mixed plastic wastes. Int. J. Adv. Eng. Technol. 2015, 8, 794.Search in Google Scholar
2. Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Conver. Manag. 2016, 115, 308–326; https://doi.org/10.1016/j.enconman.2016.02.037.Search in Google Scholar
3. Singh, R. K., Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171; https://doi.org/10.1016/j.fuel.2016.01.049.Search in Google Scholar
4. Demirbas, A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J. Anal. Appl. Pyrol. 2004, 72, 97–102; https://doi.org/10.1016/j.jaap.2004.03.001.Search in Google Scholar
5. Scott, D., Czernik, S., Piskorz, J., Radlein, D. S. A. Fast pyrolysis of plastic wastes. Energy Fuels 1990, 4, 407–411; https://doi.org/10.1021/ef00022a013.Search in Google Scholar
6. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., Ismail, I., Nizami, A. Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterio. Biodegrad. 2017, 119, 239–252; https://doi.org/10.1016/j.ibiod.2016.09.017.Search in Google Scholar
7. Yan, G., Jing, X., Wen, H., Xiang, S. Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure. Energy Fuels 2015, 29, 2289–2298; https://doi.org/10.1021/ef502919f.Search in Google Scholar
8. Silvarrey, L. D., Phan, A. Kinetic study of municipal plastic waste. Int. J. Hydro. Energy 2016, 41, 16352–16364; https://doi.org/10.1016/j.ijhydene.2016.05.202.Search in Google Scholar
9. Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., Nizami, A. Catalytic pyrolysis of plastic waste: a review. Pro. Saf. Environ. Prot. 2016, 102, 822–838; https://doi.org/10.1016/j.psep.2016.06.022.Search in Google Scholar
10. Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., Ahmad, W. Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy 2015, 12, 663–671; https://doi.org/10.1080/15435075.2014.880146.Search in Google Scholar
11. Galwey, A. K., Brown, M. E. Arrhenius parameters and compensation behaviour in solid-state decompositions. Thermochim. Acta 1997, 300, 107–115; https://doi.org/10.1016/s0040-6031(96)03120-6.Search in Google Scholar
12. Nisar, J., Ali, G., Shah, A., Shah, M. R., Iqbal, M., Ashiq, M. N., Bhatti, H. N. Pyrolysis of expanded waste polystyrene: influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution. Energy Fuels 2019, 33, 12666–12678; https://doi.org/10.1021/acs.energyfuels.9b03004.Search in Google Scholar
13. Eze, W. U., Madufor, I. C., Onyeagoro, G. N., Obasi, H. C., Ugbaja, M. I. Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull. 2020, 1–22.10.1007/s00289-020-03116-4Search in Google Scholar
14. Eze, W. U., Madufor, I. C., Onyeagoro, G. N., Obasi, H. C. The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym. Bull. 2020, 77, 1399–1415; https://doi.org/10.1007/s00289-019-02806-y.Search in Google Scholar
15. Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., Farooq, A., Rashid, N., Wu, D. Low temperature conversion of plastic waste into light hydrocarbons. J. Hazar. Mat. 2010, 179, 15–20; https://doi.org/10.1016/j.jhazmat.2010.01.134.Search in Google Scholar PubMed
16. Li, K., Lee, S. W., Yuan, G., Lei, J., Lin, S., Weerachanchai, P., Yang, Y., Wang, J.-Y. Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies 2016, 9, 431; https://doi.org/10.3390/en9060431.Search in Google Scholar
17. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368; https://doi.org/10.1016/j.rser.2017.01.142.Search in Google Scholar
18. Chin, B. L. F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C., Sulaiman, S. A. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers. Manag. 2014, 87, 746–753; https://doi.org/10.1016/j.enconman.2014.07.043.Search in Google Scholar
19. Vasudeo, R. A., Abitha, V., Vinayak, K., Jayaja, P., Gaikwad, S. Sustainable development through feedstock recycling of plastic wastes. In Macromolecular Symposia. Wiley Online Library, 2016.10.1002/masy.201500107Search in Google Scholar
20. Nisar, J., Khan, M. A., Ali, G., Iqbal, M., Shah, A., Shah, M. R., Sherazi, S. T. H., Shah, L. A., Rehman, N. U. Pyrolysis of polypropylene over zeolite mordenite ammonium: kinetics and products distribution. J. Polym. Eng. 2019, 39, 785–793; https://doi.org/10.1515/polyeng-2019-0077.Search in Google Scholar
21. Nisar, J., Awan, I. A., Iqbal, M., Khan, R. A., Shah, A., Razaq, R. Kinetics of the gas-phase thermal decomposition of 3-chloropropene. Chem. Phys. Lett. 2016, 661, 200–205; https://doi.org/10.1016/j.cplett.2016.08.060.Search in Google Scholar
22. Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Ullah, R., Akhter, M. S. Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag. 2019, 88, 236–247; https://doi.org/10.1016/j.wasman.2019.03.035.Search in Google Scholar
23. Liu, M., Zhuo, J. K., Xiong, S. J., Yao, Q. Catalytic degradation of high-density polyethylene over a clay catalyst compared with other catalysts. Energy Fuels 2014, 28, 6038–6045; https://doi.org/10.1021/ef501326k.Search in Google Scholar
24. Sengupta, P., Saikia, P. C., Borthakur, P. C. SEM-EDX Characterization of an Iron-Rich Kaolinite Clay. J. Sci. Ind. Res. 2008, 67, 812–818.Search in Google Scholar
25. Garcia, D., Guo, R., Bhalla, A. Growth and properties of Ba0. 9Sr0. 1TiO3 single crystal fibers. Mater. Lett. 2000, 42, 136–141; https://doi.org/10.1016/s0167-577x(99)00172-x.Search in Google Scholar
26. Kareiva, A., Tautkus, S., Rapalaviciute, R., Jørgensen, J.-E., Lundtoft, B. Sol-gel synthesis and characterization of barium titanate powders. J. Mater. Sci. 1999, 34, 4853–4857; https://doi.org/10.1023/a:1004615912473.10.1023/A:1004615912473Search in Google Scholar
27. Feng, J., Hu, X., Yue, P. L. Novel bentonite clay-based Fe− nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environ. Sci. Technol. 2004, 38, 269–275; https://doi.org/10.1021/es034515c.Search in Google Scholar
28. Ali, M. F., Qureshi, M. S. Catalyzed pyrolysis of plastics: a thermogravimetric study. Afr. J. Pure Appl. Chem. 2011, 5, 219–223; https://doi.org/10.5897/ajpac111230.Search in Google Scholar
29. Guo, Y.-H., Pu, M., Wu, J.-Y., Zhang, J.-Y., Chen, B.-H. Theoretical study of the cracking mechanisms of linear α-olefins catalyzed by zeolites. Appl. Surf. Sci. 2007, 254, 604–609; https://doi.org/10.1016/j.apsusc.2007.06.039.Search in Google Scholar
30. Pacheco Filho, J. G. A., Graciliano, E. C., Silva, A. O. S., Souza, M. J., Araujo, A. S. Thermo gravimetric kinetics of polypropylene degradation on ZSM-12 and ZSM-5 catalysts. Catal. Today 2005, 107, 507–512; https://doi.org/10.1016/j.cattod.2005.07.065.Search in Google Scholar
31. Marcilla, A., Gomez, A., Reyes-Labarta, J., Giner, A., Hernández, F. Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst. J. Anal. Appl. Pyrolysis 2003, 68, 467–480; https://doi.org/10.1016/s0165-2370(03)00036-6.Search in Google Scholar
32. Khawam, A., Flanagan, D. R. Desolvation kinetics of sulfameter solvates. J. Pharm. Sci. 2008, 97, 2160–2175; https://doi.org/10.1002/jps.21144.Search in Google Scholar PubMed
33. Ali, G., Nisar, J., Iqbal, M., Shah, A., Abbas, M., Shah, M. R., Rashid, U., Bhatti, I. A., Khan, R. A., Shah, F. Thermo-catalytic decomposition of polystyrene waste: comparative analysis using different kinetic models. Waste Manag. Res. 2020, 38, 202–212; https://doi.org/10.1177/0734242x19865339.Search in Google Scholar
34. Koga, N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim. Acta 1994, 244, 1–20; https://doi.org/10.1016/0040-6031(94)80202-5.Search in Google Scholar
35. Nisar, J., Khan, M. A., Iqbal, M., Shah, A., Khan, R. A., Sayed, M., Mahmood, T. Comparative study of kinetics of the thermal decomposition of polypropylene using different methods. Adv. Polym. Technol. 2018, 37, 1168–1175; https://doi.org/10.1002/adv.21776.Search in Google Scholar
36. Rantuch, P., Kačíková, D., Nagypál, B. Investigation of activation energy of polypropylene composite thermooxidation by model-free methods. Eur. J. Environ. Saf. Sci. 2014, 2, 12–18.Search in Google Scholar
37. Karisathan Sundararajan, N., Ramachandran Bhagavathi, A. Experimental investigation on thermocatalytic pyrolysis of HDPE plastic waste and the effects of its liquid yield over the performance, emission, and combustion characteristics of CI engine. Energy Fuels 2016, 30, 5379–5390; https://doi.org/10.1021/acs.energyfuels.6b00407.Search in Google Scholar
38. Kassargy, C., Awad, S., Burnens, G., Kahine, K., Tazerout, M. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. J. Anal. Appl. Pyrol. 2017, 127, 31–37; https://doi.org/10.1016/j.jaap.2017.09.005.Search in Google Scholar
39. Jiraroj, D., Chaipurimat, A., Kerdsa, N., Hannongbua, S., Tungasmita, D. N. Catalytic cracking of polypropylene using aluminosilicate catalysts. J. Anal. Appl. Pyrol. 2016, 120, 529–539; https://doi.org/10.1016/j.jaap.2016.07.008.Search in Google Scholar
40. Hakeem, I. G., Aberuagba, F., Musa, U. Catalytic pyrolysis of waste polypropylene using Ahoko kaolin from Nigeria. Appl. Petrochem. Res. 2018, 8, 203–210; https://doi.org/10.1007/s13203-018-0207-8.Search in Google Scholar
41. Tekin, K., Akalın, M., Kadı, Ç., Karagöz, S. Catalytic degradation of waste polypropylene by pyrolysis. J. Energy Inst. 2012, 85, 150–155; https://doi.org/10.1179/1743967112z.00000000029.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices