Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
Abstract
The aim of this research work is to examine the modification of structure, morphology and conductivity properties of PMMA: PEO blend hybrid polymer electrolyte system complexed with NaClO4 salt. Solution-cast procedure was adopted in preparation of these films. These films were characterized with XRD, SEM, DSC, and DC conductivity for the evaluation of modified properties. Peaks have disappeared and broadened in the XRD pattern of PMMA for higher concentration of PEO polymer and salt presented films, which indicated that attaining of higher amorphous phase in these polymer electrolyte films. Almost smooth surface morphology with fewer pores was observed in 20 wt. % of PEO and NaClO4 salt present PMMA films of SEM image. This establishes a dominant presence of amorphous content in these NaClO4 complexed PMMA:PEO hybrid electrolyte films when compared to pure PMMA and PEO. Disappearance of melting temperature was observed in all concentrations of NaClO4 salt and PEO polymer added PMMA polymer films, which suggests a decrease of crystalline and an increase of amorphous nature. Enhancing of DC conductivity with temperature was observed in all the films but higher conductivity was exhibited at higher concentration of NaClO4 salt present films.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gao, R., Nam, H. O., Ko, W. I., Jang, H. National options for a sustainable nuclear energy system: MCDM evaluation using an improved integrated weighting approach. Energies 2017, 10, 2017; https://doi.org/10.3390/en10122017.Suche in Google Scholar
2. Kang, Y. K., Lee, C. J. Polymer electrolytes for lithium polymer batteries. Polym. Sci. Technol. 2003, 14, 396–406.Suche in Google Scholar
3. Kermani, G., Sahraei, E. Review: characterization and modeling of the mechanical properties of lithium-ion batteries. Energies 2017, 10, 1730; https://doi.org/10.3390/en10111730.Suche in Google Scholar
4. Lim, Y. S., Jung, H.-A., Hwang, H. Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 2018, 11, 2559; https://doi.org/10.3390/en11102559.Suche in Google Scholar
5. Che, H., Chen, S., Xie, Y., Wang, H., Amine, K., Liao, X. Z., Ma, Z. F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1075; https://doi.org/10.1039/c7ee00524e.Suche in Google Scholar
6. Åvall, G., Mindemark, J., Brandell, D., Johansson, P. Sodium‐ion battery electrolytes: modeling and simulations. Adv. Energy Mater. 2018, 8, 1703036; https://doi.org/10.1002/aenm.201703036.Suche in Google Scholar
7. Zhou, C., Bag, S., Thangadurai, V. Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett. 2018, 3, 2181; https://doi.org/10.1021/acsenergylett.8b00948.Suche in Google Scholar
8. Ponrouch, A., Monti, D., Boschin, A., Steen, B., Johansson, P., Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22; https://doi.org/10.1039/c4ta04428b.Suche in Google Scholar
9. Qiao, L., Judez, X., Rojo, T., Armand, M., Zhang, H. Review: polymer electrolytes for sodium batteries. J. Electrochem. Soc. 2020, 167, 070534; https://doi.org/10.1149/1945-7111/ab7aa0.Suche in Google Scholar
10. Mishra, K., Yadav, N., Hashmi, S. A. Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J. Mater. Chem. A 2020, 8, 22507–22543; https://doi.org/10.1039/d0ta07188a.Suche in Google Scholar
11. Armand, M. B. Polymers with ionic conductivity. Adv. Mater. 1990, 2, 278; https://doi.org/10.1002/adma.19900020603.Suche in Google Scholar
12. Rajendran, S., Mahendran, O., Krishnaveni, K. Effect of CeO2 on conductivity of PMMA/PEO polymer blend electrolytes. J. New. Mat. Electrochem. Syst. 2003, 6, 25–28.Suche in Google Scholar
13. Chan, C. H., Kammer, H.-W. Low frequency dielectric relaxation and conductance of solid polymer electrolytes with PEO and blends of PEO and PMMA. Polymers 2020, 12, 1009. e7; https://doi.org/10.3390/polym12051009.Suche in Google Scholar PubMed PubMed Central
14. Kenneth, G. B. M. Engineering Materials, Properties Selection, 5th ed.; Prentice-Hall: New Jersey, 1996.Suche in Google Scholar
15. Chen, S., Wei, L., Cheng, B., Jin, Y., Duan, H. Influences of interface structure on tribological properties of engineering, polymer blends: a review. J. Polym. Eng. 2020, 40, 629–636; https://doi.org/10.1515/polyeng-2020-0076.Suche in Google Scholar
16. Yap, Y. L., You, A. H., Teo, L. L. Preparation and characterization studies of PMMA–PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics 2019, 25, 3087–3098; https://doi.org/10.1007/s11581-019-02842-8.Suche in Google Scholar
17. Aziz, S. B., Hazrin, Z., Abidin, Z. Ion‐transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J. Appl. Polym. Sci. 2015, 132, 41774; https://doi.org/10.1002/app.Suche in Google Scholar
18. Gayitri, H. M., Al-Gunaid, M., Madhukar, B. S., Siddaramaiah, B., Gnana Prakash, A. P. Structural, dielectric permittivity and optical characteristics of casting poly vinyl alcohol/calcium nickel aluminate nanocomposite films. Polym. Plast. Technol. Eng. 2019, 58.10.1080/03602559.2018.1542719Suche in Google Scholar
19. Arai, F., Shinohara, K., Nagasawa, N., Takeshita, H., Takenaka, K., Miya, M., Shiomi, T. Crystallization behavior and higher-order structure in miscible crystalline/crystalline polymer blends. Polym. J. 2013, 45, 921–928; https://doi.org/10.1038/pj.2013.5.Suche in Google Scholar
20. Lassoued, A., Dkhil, B., Gadri, A., Ammar, S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017, 7, 3007–3015; https://doi.org/10.1016/j.rinp.2017.07.066.Suche in Google Scholar
21. Kumar, S., Manikandan, V. S., Palai, A. K., Mohanty, S., Nayak, S. K. Fe2O3 as an efficient filler in PVDF-HFP based polymeric electrolyte for dye sensitized solar cell application. Solid State Ionics 2019, 332, 10–15; https://doi.org/10.1016/j.ssi.2019.01.006.Suche in Google Scholar
22. Johan, M. R., Ting, L. M. Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int. J. Electrochem. Sci. 2011, 6, 4737–4748.Suche in Google Scholar
23. Chew, K. W., Tan, K. W. The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate LiCF3SO3. Int. J. Electrochem. Sci. 2011, 6, 5792–5801.Suche in Google Scholar
24. Ravindar Reddy, M., Subrahmanyam, A. R., Maheshwar Reddy, M., Siva Kumar, J., Kamalaker, V., Jaipal Reddy, M. X-R. D. SEM, FT-IR, DSC studies of polymer blend films of PMMA and PEO. Mater. Today: Proc. 2016, 3, 3713–3718; https://doi.org/10.1016/j.matpr.2016.11.018.Suche in Google Scholar
25. Yap, Y. L., You, A. H., Teo, L. L., Hanapei, H. Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int. J. Electrochem. Sci. 2013, 8, 2154–2163.Suche in Google Scholar
26. Agarwal, S., Saraswat, V. K. Synthesis and thermal characterization of PMMA-TiO2 nanocomposites. Mater. Sci. Res. India 2014, 11, 168–172; https://doi.org/10.13005/msri/110210.Suche in Google Scholar
27. Al-Hussam, A., AL-Gunaid, M. Q. A., Aqeel, S. M. Thermal and electrical behaviors of PMMA/PEG/LiCO4/MWNTs blend polymer electrolyte nanocomposites. Int. J. Sci. Technol. Eng. Technol. Res. 2018, 7, 796–804.Suche in Google Scholar
28. Chaurasia, S. K., Saroj, A. L., Shalu, Singh, V. K., Tripathi, A. K., Gupta, A. K., Verma, Y. L., Singh, R. K. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv. 2015, 5, 077178.10.1063/1.4927768Suche in Google Scholar
29. Manoratne, C. H., Rajapakse, R. M. G., Dissanayake, M. A. K. L. Ionic conductivity of poly(ethylene oxide) (PEO)- montmorillonite (MMT) nanocomposites prepared by intercalation from aqueous. Int. J. Electrochem. Sci. 2006, 1, 32–46.Suche in Google Scholar
30. Rajendran, S., Ramesh Prabhu, M., Usha Rani, M. Characterization of PVC/PEMA based polymer blend electrolytes. Int. J. Electrochem. Sci. 2008, 3, 282.Suche in Google Scholar
31. Farheen, S., Mathad, R. D. Effect of Nano TiO2 on structural, thermal and ionic transport properties of PEO–PMMA polymer blend electrolyte for Li-ion batteries. Mater. Today: Proc. 2016, 3, 3632–3636; https://doi.org/10.1016/j.matpr.2016.11.006.Suche in Google Scholar
32. Rajendran, S., Ramesh Prabhu, M., Usha Rani, M. Ionic conduction in poly(vinyl chloride)/poly(ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts. J. Power Sources 2008, 180, 880–883; https://doi.org/10.1016/j.jpowsour.2008.02.063.Suche in Google Scholar
33. Miyamoto, T., Shibayama, K. Free‐volume model for ionic conductivity in polymers. J. Appl. Phys. 1973, 44, 5372; https://doi.org/10.1063/1.1662158.Suche in Google Scholar
34. Rama Mohan, K., Achari, V. B. S., Rao, V. V. R. N., Sharma, A. K. Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym. Test. 2011, 30, 881–886; https://doi.org/10.1016/j.polymertesting.2011.08.010.Suche in Google Scholar
35. Jaipal Reddy, M., Chu, P. P. Optical microscopy and conductivity of poly(ethylene oxide) complexed with KI salt. Electrochim. Acta 2002, 47, 1189; https://doi.org/10.1016/s0013-4686(01)00846-5.Suche in Google Scholar
36. Jaipal Reddy, M., Chu, P. P. Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 2002, 109, 340; https://doi.org/10.1016/s0378-7753(02)00084-8.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Artikel in diesem Heft
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices