Abstract
Induction welding is an important joining technique with potentially significant application in the connection of the Poly Ether Ether Ketone (PEEK). The present research employs the metal mesh as induction components into the induction welding of PEEK plate to PEEK plate at low power successfully. Besides, the examinations and analyses of macro/micro-structures, energy dispersive spectroscopy (EDS) and mechanical tensile properties of the joints are conducted. Meanwhile, the characteristics and formation mechanisms of the lap-welded interface structures are interpreted in detail. The results indicate that the interface morphology of the welded joint is of high quality at low power, which most of the interface area is tightly connected due to the element diffusion. Besides, the connection mechanism of the joint is bonding connection and mechanical engagement, which plays a major role in a great performance joint. Furthermore, the tensile fracture of the joint occurs in the heat-affected zone, which contributes to a high joint tensile strength.
Award Identifier / Grant number: 501100011219
Acknowledgments
This work was supported by the open subject of the National Key Laboratory of Advanced Composites.
References
1. Hassan E. A. M., Yang L., Elagib T. H. H. Composites Part B: Engineering 2019, 171, 70–77. https://doi.org/10.1016/j.compositesb.2019.04.015.Suche in Google Scholar
2. Liu H., Su X., Tao J. Journal of Applied Polymer Science 2019, 136, 47245. https://doi.org/10.1002/app.47245.Suche in Google Scholar
3. Velisaris C. N., Seferis J. C. Polymer Engineering & Science 2004, 26, 1574–1581. https://doi.org/10.1016/j.compositesa.2003.12.004.Suche in Google Scholar
4. Kurdi A., Kan W. H., Chang L. Tribology International 2019, 130, 94–105. https://doi.org/10.1016/j.triboint.2018.09.010.Suche in Google Scholar
5. Mitschang P., Velthuis R., Didi M. Advanced engineering materials 2013, 15, 804–813. https://doi.org/10.1002/adem.201200273.Suche in Google Scholar
6. Li Y., Bu H., Yang H. Journal of Manufacturing Processes 2020, 50, 366–379. https://doi.org/10.1016/j.jmapro.2019.12.023.Suche in Google Scholar
7. Yousefpour A., Hojjati M., Immarigeon J. P. Journal of Thermoplastic composite materials 2004, 17, 303–341. https://doi.org/10.1177/0892705704045187.Suche in Google Scholar
8. Henriques B., Fabris D., Tuyama E. Journal of Adhesion Science and Technology 2019, 33, 1090–1101. https://doi.org/10.1080/01694243.2019.1565289.Suche in Google Scholar
9. Villegas I. F., van Moorleghem R. Composites Part A: Applied Science and Manufacturing 2018, 109, 75–83. https://doi.org/10.1016/j.compositesa.2018.02.022.Suche in Google Scholar
10. Jiao J., Xu Z., Wang Q. Optics & Laser Technology 2018, 103, 170–176. https://doi.org/10.1016/j.optlastec.2018.01.023.Suche in Google Scholar
11. Banik N. Materials Today: Proceedings 2018, 5, 20239–20249. https://doi.org/10.1016/j.matpr.2018.06.395.Suche in Google Scholar
12. Zhang X., He X., Gu F. Journal of Materials Processing Technology 2019, 268, 192–200. https://doi.org/10.1016/j.jmatprotec.2019.01.019.Suche in Google Scholar
13. Ashcroft I. A., Hughes D. J., Shaw S. J. Assembly Automation 2000, 20, 150–161. https://doi.org/10.1108/01445150010321797.Suche in Google Scholar
14. Wang H., Li N., Liu L. Materials 2019, 12, 2167. https://doi.org/10.3390/ma12132167.Suche in Google Scholar PubMed PubMed Central
15. Fortier V., Brunel J. E., Lebel L. Journal of Composite Materials 2020, 54, 801–812, 0021998319867375. https://doi.org/10.1177/0021998319867375.Suche in Google Scholar
16. Zhan X., Li Y., Gao C. Optics & Laser Technology 2018, 106, 398–409. https://doi.org/10.1016/j.optlastec.2018.04.023.Suche in Google Scholar
17. Gouin O’Shaughnessey P., Dubé M., Fernandez Villegas I. Journal of Composite Materials 2016, 50, 2895–2910. https://doi.org/10.1177/0021998315614991.Suche in Google Scholar
18. Choudhury M. R., Debnath K. Polymer Engineering & Science 2019, 59, 1965–1985. https://doi.org/10.1002/pen.25207.Suche in Google Scholar
19. Stokes V. K. Polymer Engineering & Science 2010, 43, 1523–1541. https://doi.org/10.1002/pen.10129.Suche in Google Scholar
20. Dughiero F., Forzan M., Garbin M. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering. 2011, 30, 1570–1581. https://doi.org/10.1108/03321641111152720.Suche in Google Scholar
21. Mitschang P., Velthuis R., Didi M. Advanced engineering materials 2013, 15, 804–813. https://doi.org/10.1002/adem.201200273.Suche in Google Scholar
22. Bayerl T., Duhovic M., Mitschang P. Composites Part A: Applied Science and Manufacturing 2014, 57, 27–40. https://doi.org/10.1016/j.compositesa.2013.10.024.Suche in Google Scholar
23. Gouin O’Shaughnessey P., Dubé M., Fernandez Villegas I. Journal of Composite Materials 2016, 50, 2895–2910. https://doi.org/10.1177/0021998315614991.Suche in Google Scholar
24. Lionetto F., Silvio P., Buccoliero G. Materials & Design 2017, 120, 212–221. https://doi.org/10.1016/j.matdes.2017.02.024.Suche in Google Scholar
25. Bensaid S., Trichet D., Fouladgar J. IEEE transactions on magnetics 2005, 41, 1568–1571. https://doi.org/10.1109/TMAG.2005.845047.Suche in Google Scholar
26. Jaeschke P., Wippo V., Suttmann O. Journal of Laser Applications 2015, 27, S29004. https://doi.org/10.2351/1.4906379.Suche in Google Scholar
27. Fink B. K., Mccullough R. L., Gillespie Jr. J. W. Polymer Engineering & Science 1992, 32, 357–369. https://doi.org/10.1002/pen.760320509.Suche in Google Scholar
28. Schieler O., Beier U. King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology 2016, 9, 27–36. https://doi.org/10.14416/j.ijast.2015.10.005.Suche in Google Scholar
29. Choudhury M. R., Debnath K. Polymer Engineering & Science 2019, 59, 1965–1985. https://doi.org/10.1002/pen.25207.Suche in Google Scholar
30. Farahani R. D., Dubé M. Advanced Engineering Materials 2017, 19, 1700294. https://doi.org/10.1002/adem.201700294.Suche in Google Scholar
31. Yousefpour A., Hojjati M., Immarigeon J. P. Journal of Thermoplastic composite materials 2004, 17, 303–341. https://doi.org/10.1177/0892705704045187.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs