Startseite Study on the interface morphology in the induction welding joint of PEEK plate at low power
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the interface morphology in the induction welding joint of PEEK plate at low power

  • Wanping Ma , Xiaohong Zhan EMAIL logo , Hongyan Yang , Hengchang Bu , Yun Li und Feiyun Wang
Veröffentlicht/Copyright: 6. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Induction welding is an important joining technique with potentially significant application in the connection of the Poly Ether Ether Ketone (PEEK). The present research employs the metal mesh as induction components into the induction welding of PEEK plate to PEEK plate at low power successfully. Besides, the examinations and analyses of macro/micro-structures, energy dispersive spectroscopy (EDS) and mechanical tensile properties of the joints are conducted. Meanwhile, the characteristics and formation mechanisms of the lap-welded interface structures are interpreted in detail. The results indicate that the interface morphology of the welded joint is of high quality at low power, which most of the interface area is tightly connected due to the element diffusion. Besides, the connection mechanism of the joint is bonding connection and mechanical engagement, which plays a major role in a great performance joint. Furthermore, the tensile fracture of the joint occurs in the heat-affected zone, which contributes to a high joint tensile strength.


Corresponding author: Xiaohong Zhan, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing211106, PR China, E-mail:

Award Identifier / Grant number: 501100011219

Acknowledgments

This work was supported by the open subject of the National Key Laboratory of Advanced Composites.

References

1. Hassan E. A. M., Yang L., Elagib T. H. H. Composites Part B: Engineering 2019, 171, 70–77. https://doi.org/10.1016/j.compositesb.2019.04.015.Suche in Google Scholar

2. Liu H., Su X., Tao J. Journal of Applied Polymer Science 2019, 136, 47245. https://doi.org/10.1002/app.47245.Suche in Google Scholar

3. Velisaris C. N., Seferis J. C. Polymer Engineering & Science 2004, 26, 1574–1581. https://doi.org/10.1016/j.compositesa.2003.12.004.Suche in Google Scholar

4. Kurdi A., Kan W. H., Chang L. Tribology International 2019, 130, 94–105. https://doi.org/10.1016/j.triboint.2018.09.010.Suche in Google Scholar

5. Mitschang P., Velthuis R., Didi M. Advanced engineering materials 2013, 15, 804–813. https://doi.org/10.1002/adem.201200273.Suche in Google Scholar

6. Li Y., Bu H., Yang H. Journal of Manufacturing Processes 2020, 50, 366–379. https://doi.org/10.1016/j.jmapro.2019.12.023.Suche in Google Scholar

7. Yousefpour A., Hojjati M., Immarigeon J. P. Journal of Thermoplastic composite materials 2004, 17, 303–341. https://doi.org/10.1177/0892705704045187.Suche in Google Scholar

8. Henriques B., Fabris D., Tuyama E. Journal of Adhesion Science and Technology 2019, 33, 1090–1101. https://doi.org/10.1080/01694243.2019.1565289.Suche in Google Scholar

9. Villegas I. F., van Moorleghem R. Composites Part A: Applied Science and Manufacturing 2018, 109, 75–83. https://doi.org/10.1016/j.compositesa.2018.02.022.Suche in Google Scholar

10. Jiao J., Xu Z., Wang Q. Optics & Laser Technology 2018, 103, 170–176. https://doi.org/10.1016/j.optlastec.2018.01.023.Suche in Google Scholar

11. Banik N. Materials Today: Proceedings 2018, 5, 20239–20249. https://doi.org/10.1016/j.matpr.2018.06.395.Suche in Google Scholar

12. Zhang X., He X., Gu F. Journal of Materials Processing Technology 2019, 268, 192–200. https://doi.org/10.1016/j.jmatprotec.2019.01.019.Suche in Google Scholar

13. Ashcroft I. A., Hughes D. J., Shaw S. J. Assembly Automation 2000, 20, 150–161. https://doi.org/10.1108/01445150010321797.Suche in Google Scholar

14. Wang H., Li N., Liu L. Materials 2019, 12, 2167. https://doi.org/10.3390/ma12132167.Suche in Google Scholar PubMed PubMed Central

15. Fortier V., Brunel J. E., Lebel L. Journal of Composite Materials 2020, 54, 801–812, 0021998319867375. https://doi.org/10.1177/0021998319867375.Suche in Google Scholar

16. Zhan X., Li Y., Gao C. Optics & Laser Technology 2018, 106, 398–409. https://doi.org/10.1016/j.optlastec.2018.04.023.Suche in Google Scholar

17. Gouin O’Shaughnessey P., Dubé M., Fernandez Villegas I. Journal of Composite Materials 2016, 50, 2895–2910. https://doi.org/10.1177/0021998315614991.Suche in Google Scholar

18. Choudhury M. R., Debnath K. Polymer Engineering & Science 2019, 59, 1965–1985. https://doi.org/10.1002/pen.25207.Suche in Google Scholar

19. Stokes V. K. Polymer Engineering & Science 2010, 43, 1523–1541. https://doi.org/10.1002/pen.10129.Suche in Google Scholar

20. Dughiero F., Forzan M., Garbin M. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering. 2011, 30, 1570–1581. https://doi.org/10.1108/03321641111152720.Suche in Google Scholar

21. Mitschang P., Velthuis R., Didi M. Advanced engineering materials 2013, 15, 804–813. https://doi.org/10.1002/adem.201200273.Suche in Google Scholar

22. Bayerl T., Duhovic M., Mitschang P. Composites Part A: Applied Science and Manufacturing 2014, 57, 27–40. https://doi.org/10.1016/j.compositesa.2013.10.024.Suche in Google Scholar

23. Gouin O’Shaughnessey P., Dubé M., Fernandez Villegas I. Journal of Composite Materials 2016, 50, 2895–2910. https://doi.org/10.1177/0021998315614991.Suche in Google Scholar

24. Lionetto F., Silvio P., Buccoliero G. Materials & Design 2017, 120, 212–221. https://doi.org/10.1016/j.matdes.2017.02.024.Suche in Google Scholar

25. Bensaid S., Trichet D., Fouladgar J. IEEE transactions on magnetics 2005, 41, 1568–1571. https://doi.org/10.1109/TMAG.2005.845047.Suche in Google Scholar

26. Jaeschke P., Wippo V., Suttmann O. Journal of Laser Applications 2015, 27, S29004. https://doi.org/10.2351/1.4906379.Suche in Google Scholar

27. Fink B. K., Mccullough R. L., Gillespie Jr. J. W. Polymer Engineering & Science 1992, 32, 357–369. https://doi.org/10.1002/pen.760320509.Suche in Google Scholar

28. Schieler O., Beier U. King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology 2016, 9, 27–36. https://doi.org/10.14416/j.ijast.2015.10.005.Suche in Google Scholar

29. Choudhury M. R., Debnath K. Polymer Engineering & Science 2019, 59, 1965–1985. https://doi.org/10.1002/pen.25207.Suche in Google Scholar

30. Farahani R. D., Dubé M. Advanced Engineering Materials 2017, 19, 1700294. https://doi.org/10.1002/adem.201700294.Suche in Google Scholar

31. Yousefpour A., Hojjati M., Immarigeon J. P. Journal of Thermoplastic composite materials 2004, 17, 303–341. https://doi.org/10.1177/0892705704045187.Suche in Google Scholar

Received: 2020-01-16
Accepted: 2020-03-18
Published Online: 2020-05-06
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0011/html
Button zum nach oben scrollen